We present results on photoproduction of ϱ 0 and ω in the reactions γ p→ π + π − p and γ p→ π + π − π 0 p by tagged photons in the energy ranges 20 to 70 GeV and 20 to 45 GeV, respectively. The production of the ϱ 0 shows dominantly the characteristics of a diffractive process with respect to the E γ and t dependence of the cross section and the spin density matrix. The ϱ 0 photoproduction yields on average over the photon energy range a total cross section of σ ( γ p→ ϱ 0 p) = 9.4±0.1 μ b with an additional systematic error of ±1 μ b, and average slope parameters of the t distribution d σ /d t ≈exp(− b | t | + ct 2 ), of b =9.1±0.1 GeV −2 and c = 3.1 ±±0.2 GeV −4 . The shape of the ϱ 0 peak in the π + π − invariant spectra shows a skewing similar to that observed at lower energies. The photoproduction of ω is also consistent with a diffractive process and has a cross section of σ ( γ p→ ω p) = 1.2± 0.1 μ b with an additional systematic error of ±0.2 μ b. The average slope parameters of the t distribution are b =8.3 ± 1.3 GeV −2 and c = 3.4±2.6 GeV −4 .
FITS USING THE SODING PARAMETERIZATION.
FITS USING THE ROSS-STODOLSKY PARAMETERIZATION.
No description provided.
None
No description provided.
No description provided.
No description provided.
The production of charged hadrons with high p T in αα collisions at √ s =126 GeV and pp collisions at √ s =31 and 63 GeV is compared, and the structure of the events associated with the high- p T particles is studied. The probability of finding associated particles close to the trigger particle increases strongly between √ s =31 and 63 GeV for pp collisions. For p T >2.5GeV/ c the αα/pp cross section ratio at the same energy per nucleon is measured to be 18.7 ± 2.0, to be compared with A 2 = 16, and a higher associated multiplicity is observed for αα.
FIRST PP DATA IS AT SQRT(S)=31 AND THE SECOND PP DATA IS AT 63 GEV.
The inclusive cross sections for the production of high transverse momentum π + and π − mesons in proton-proton interactions have been measured at the highest ISR energy √ s = 63 GeV and at a c.m. production angle of 50°. The cross sections for π + and π − mesons are compared as a function of transverse momentum. It is shown that the inclusive cross section of π − mesons decreases faster than the π + cross section. particle σ ( π ± )/ σ (charged particles) are presented as a function of transverse momentum.
.
The reaction e + e − → hadrons has been measured in the ϒ and ϒ′ region using the DASP detector at the DESY storage ring DORIS. The following final results are obtained: R had (9.5 GeV)=3.73±0.16±0.28, Γ ee ( ϒ )=(1.23 ± 0.08 ± 0.12) keV, B μμ ( ϒ )=(3.2±1.3±0.3)%, Γ ee Γ had Γ tot (ϒ′)=(0.55±0.11 ±0.06) keV , and M ( ϒ ′)− M ( ϒ )=(556 ±10) MeV.
CROSS SECTION AROUND UPSILON AND UPSILON PRIME.
No description provided.
None
No description provided.
No description provided.
No description provided.
We present results on inclusive φ meson production in K + p interactions at 70 GeV/ c in the kaon fragmentation x >0.2 region. Comparison with other data on φ meson production in K ± and p induced reactions provides evidence that the strange valence-quark fragmentation or recombination processes play the dominant role in the K ± → φ transitions. Arguments are presented that the kaon valence strange s -quark carries a much higher momentum fraction than the u-quark. Evidence for the previously observed narrow φπ + state at mass ∼2.1 GeV is discussed.
.
.
.
We present results on the inclusive polarization of Λ hyperons produced in K + p interactions at 32 and 70 GeV/ c . A large positive Λ polarization is observed in the kaon fragmentation region. The polarization is energy independent, increases strongly with increasing x , but shows essentially no p T -dependence.
.
.
.
Results are presented onK+p elastic scattering and on the reactionK+p→K+pπ+π− at 70 GeV/c. For the
.
.
.
Data are presented on the Gross-Llewellyn Smith sum rule obtained from combined narrow-band neon and Freon bubble-chamber neutrino-antineutrino experiments. Remarkably no significant deviation from the parton-model prediction for the sum rule is observed at very low values of q2≲1 GeV2. Limits on the effective QCD scale parameter Λ and on the magnitude of the twist-4 correction are set. The best fit, neglecting higher-twist contributions, gives Λ=92−36+20 MeV.
NACHTMANN MOMENT IS EVALUATED (IE TARGET MASS COEERCTIONS INCLUDED).