The first measurement of the neutron form factor in the time-like region has been performed by the FENICE experiment at the ADONE e + e − storage ring. Results at q 2 = 4.0 and 4.4 (GeV/ c ) 2 , together with a new measurement of the proton form factor are presented here.
Neutron form factor and cross section.
Preliminary analysis of proton form factor and cross section.
Dielectron production in p+d and p+p collisions at the beam kinetic energy of 4.9 GeV has been measured with the Dilepton Spectrometer. Features of the dielectron cross section have been studied with cuts on the mass and transverse momentum of the pairs. The spectra for several regions of phase space are presented as a function of the pair mass and transverse momentum.
Mass distribution.
Mass distribution.
Transverse momentum distribution.
The dijet invariant mass distribution has been measured in the region between 140 and 1000 GeV/c2, in 1.8 TeV p p¯ collisions. Data collected with the Collider Detector at Fermilab show agreement with QCD calculations. A limit on quark compositeness of Λc>1.3 TeV is obtained. Axigluons with masses between 240 and 640 GeV/c2 are excluded at 95% C.L. if we assume ten open decay channels. Model-independent limits on the production of heavy particles decaying into two jets are also presented.
No description provided.
We present a measurement of the b-quark cross section in 1.8 TeV p-p¯ collisions recorded with the Collider Detector at Fermilab using muonic b-quark decays. In the central rapidity region (‖yb‖<1.0), the cross section is 295±21±75 nb (59±14±15 nb) for pTb>21 GeV/c (29 GeV/c). Comparisons are made to previous measurements and next-to-leading order QCD calculations.
No description provided.
We have mesured the polarization of 375-GeV/c Σ+ and Σ¯ − hyperons produced by 800-GeV/c protons incident on a Cu target. We find that the Σ+ polarization rises with increasing pt to a maximum of 16% at pt=1.0 GeV/c and then decreases to 10% at pt=1.8 GeV/c. We compare this Σ+ polarization with data at lower energies. The Σ¯ − polarization has been measured for the first time. It has the same sign as the Σ+ but smaller magnitude in a similar kinematical region.
Data from Horizontal targeting.
Data from Vertical targeting.
Data from Horizontal targeting.
We measure the Drell-Yan differential cross section d2σdMdy||y|<1 over the mass range 11
Dielectron differential cross section.
Dimuon differential cross section.
Drell-Yan differential cross section for combined dielectron and dimuon data. Error includes both statistics and systematics.
This paper reports a search for excited electrons at the HERA electron-proton collider. In a sample corresponding to an integrated luminosity of 26 nb − , no evidence was found for any resonant state decaying into e − γ , ν W − or e − Z 0 . Limits on the coupling strength of an excited electron have been determined for masses between 45 and 225 GeV. This study also reports the observation of the wide-angle e γ Compton scattering process.
No description provided.
The forward-backward asymmetries of$$e^ + e^ - \to Z^0 \to b\bar b and e^ + e^ - \to Z^0 \to c\bar c$$
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit, neglecting the effects of B0-BBAR0 mixing.
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit and correcting for B0-BBAR0 mixing. The second systematic error is due to the uncertainty of the mixing factor.
Measurement of the asymmetry in c-quark production on the Z0 peak using a two parameter fit.
A complete set of polarization-transfer observables has been measured for quasifree (p→,n→) reactions on H2, C12, and Ca40 at a bombarding energy of 495 MeV and a laboratory scattering angle of 18°. The data span an energy-loss range from 0 to 160 MeV, with a corresponding momentum transfer range of qc.m.=1.7–1.9 fm−1. The laboratory observables are used to construct partial cross sections proportional to the nonspin response and three orthogonal spin responses. These results are compared to the transverse spin response measured in deep inelastic electron scattering and to nuclear responses based on the random phase approximation. The polarization observables for all three targets are remarkably similar and reveal no evidence for an enhancement of the spin-longitudinal nuclear response relative to the spin-transverse response. These results suggest the need for substantial modifications to the standard form assumed for the residual particle-hole interaction.
No description provided.
No description provided.
No description provided.
We have studied c (charm) and b (bottom) quark production at the TRISTAN energy region by tagging prompt electrons from the semileptonic decays. Electrons were identified over a wide momentum range between 1 and 29 GeV/ c by a transition-radiation-detector in addition to a lead-glass calorimeter. The production cross sections of c and b quarks and the mean values of the fragmentation functions for c and b quarks were obtained as σ c = 55.9±8.8(stat.)±7.9(syst.) pb, σ b = 13.1±2.9(stat.)±1.0(syst.) pb, 〈 x c 〉 = 0.44±0.08(stat.)±0.04(syst.) and 〈 x b 〉 = 0.72±0.12(stat.)±0.08(syst.), respectively. The forward-backward asymmetries of the c and b quarks were also measured to be −0.57±0.16(stat.)±0.06(syst.) and −0.64±0.26(stat.)± 0.07(syst.), respectively. Both the cross sections and the forward-backward asymmetries of the c and b quarks are consistent with the standard model.
No description provided.
No description provided.