This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$- or $c$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one $b$-jet, at least one $c$-jet, or at least two $b$-jets with transverse momentum $p_\textrm{T} > 20$ GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected $Z + \ge 1 c$-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions.
Figure 6(left) of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 1 $ b-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 6(right) of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 2 $ b-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 7 of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 1 $ c-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
We have studied the production of J/ψ and ψ(2S) charmonium mesons in 515 GeV/c π−Be collisions in the Feynman-x range 0.1
Statistical errors only. Normalization uncertainty is 12%.
Statistical errors only. Normalization uncertainty is 12%.
Statistical errors only. Normalization uncertainty is 12%.. Theta is the angle between the MU+ and the beam axis in the J/PSI restframe (Gottfried-Jackson decay angle).
We have studied inclusive Δ++(1236) production for |tpΔ|<1.0 (GeV/c)2 in a 50 000 picture exposure of the 30-inch hydrogen bubble chamber to a 205 GeV/c proton beam. The inclusive Δ++ cross section for one hemisphere in the center-of-mass system is (1.30±0.14) mb. The mean charged multiplicity of the system recoiling off the Δ++ is in agreement with that for laboratory π−p interactions at the same energy in the center-of-mass frame. The inclusive Δ++ production is compared to inclusive Λ0 and proton production in the same experiment. The connection between Δ++ production and diffraction is discussed. We find that not all Δ++ come from the decay of a diffractively-produced state. The PT2 distribution for the Δ++ has a slope of (10.5±0.9) (GeV/c)−2 for PT2≲0.2 (GeV/c)2. This slope, together with the decay angular distribution of the Δ++ at small momentum transfer, suggests a strong pion-exchange contribution to the inclusive process. We compare the data to the expectation of a triple-Regge model with ρ- and π-exchange contributions.
No description provided.
No description provided.
No description provided.