Measurement of hyper triton lifetime in Au + Au collisions at the Relativistic Heavy-Ion Collider

The STAR collaboration Adamczyk, L. ; Adams, Joseph ; Adkins, Kevin ; et al.
Phys.Rev.C 97 (2018) 054909, 2018.
Inspire Record 1628155 DOI 10.17182/hepdata.102407

A precise measurement of the hypertriton lifetime is presented. In this letter, the mesonic decay modes $\mathrm{{^3_\Lambda}H \rightarrow ^3He + \pi^-}$ and $\mathrm{{^3_\Lambda}H \rightarrow d + p + \pi^-}$ are used to reconstruct the hypertriton from Au+Au collision data collected by the STAR collaboration at RHIC. A minimum $\chi^2$ estimation is used to determine the lifetime of $\tau = 142^{+24}_{-21}\,{\rm (stat.)} {\pm} 31\,{\rm (syst.)}$ ps. This lifetime is about 50\% shorter than the lifetime $\tau = 263\pm2$ ps of a free $\Lambda$, indicating strong hyperon-nucleon interaction in the hypernucleus system. The branching ratios of the mesonic decay channels are also determined to satisfy B.R.$_{(^3{\rm He}+\pi^-)}/$(B.R.$_{(^3{\rm He}+\pi^-)}+$B.R.$_{(d+p+\pi^-)})$ = $0.32\rm{\pm}0.05\,{\rm (stat.)}\pm 0.08\,{\rm (syst.)}$. Our ratio result favors the assignment $J(\mathrm{^{3}_{\Lambda}H})$ = $\frac{1}{2}$ over $J(\mathrm{^{3}_{\Lambda}H})$ = $\frac{3}{2}$. These measurements will help to constrain models of hyperon-baryon interactions.

4 data tables

The hypertriton yield as a function of ~l/βγ for each of the two analyzed decay channels. The redpoints are for 2-body decays in four bins of ~l/βγ. The yields indicate the number of $^3_{\Lambda}$H per million events for each channel, and are already divided by the theoretical branching ratio 24.89% for the 2-body channel. The data points are fitted with the usual radioactive decay function. Using a minimum chisquare estimation.

The hypertriton yield as a function of l/βγ for each of the two analyzed decay channels. The bluesquares are for 3-body decays in four bins of l/βγ. The yield of hypertriton per million events in 3-body correct for theoretical branching ratio 40.06% 3-body channel. The data points are fitted with the usual radioactive decay function. Using a minimum chisquare estimation.

A summary of worldwide $^3_{\Lambda}$H lifetime experimental measurements and theoretical calculations. The two star markers are the STAR collaboration’s measurement published in 2010 and the present analysis. This measurement was based on the 3-body decay channel $^3_{\Lambda}$H→p+d+π−in a nuclear emulsion experiment. The shorter lifetime was attributed to the dissociation of the lightly-bound Λ and deuteron when traveling in a dense medium.

More…

Three-particle coincidence of the long range pseudorapidity correlation in high energy nucleus-nucleus collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 105 (2010) 022301, 2010.
Inspire Record 840812 DOI 10.17182/hepdata.102404

We report the first three-particle coincidence measurement in pseudorapidity ($\Delta\eta$) between a high transverse momentum ($p_{\perp}$) trigger particle and two lower $p_{\perp}$ associated particles within azimuth $\mid$$\Delta\phi$$\mid$$<$0.7 in $\sqrt{{\it s}_{NN}}$ = 200 GeV $d$+Au and Au+Au collisions. Charge ordering properties are exploited to separate the jet-like component and the ridge (long-range $\Delta\eta$ correlation). The results indicate that the particles from the ridge are uncorrelated in $\Delta\eta$ not only with the trigger particle but also between themselves event-by-event. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jet-like component.

15 data tables

Correlated hadron distribution in ∆φ(|η|<1 with a high-p⊥trigger particle in 0-12% Au+Au collisions for 3<p(t)⊥<10 GeV/cand 1<p(a)⊥<3GeV/c. The ZYA1-normalized flow background is shown by the curve.

Correlated hadron distribution ∆η(|∆φ|<0.7) with a high-p⊥ trigger particle in 0-12% Au+Au collisions for 3<p(t)⊥<10 GeV/c and 1<p(a)⊥<3GeV/c. The ∆η distributions are background subtracted and corrected for ∆η acceptance and are for like and unlike-sign pairs separately. The curves in are Gaussian fits. Errors are statistical.

Background-subtracted charge-independent (AAT ) correlated hadron pair density in minimum bias d+Au collisions for 3<p(t)⊥<10 GeV/cand 1<p(a)⊥<3 GeV/c. The results are for near-side correlated hadrons within |∆φ1,2|<0.7, and corrected for the 3-particle ∆η-∆η acceptance. Statistical errors at (∆η1,∆η2)∼(0,0)are approximately 0.033 for d+Au respectively.

More…