Date

Measurement of $t$-channel production of single top quarks and antiquarks in $pp$ collisions at 13 TeV using the full ATLAS Run 2 data sample

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 05 (2024) 305, 2024.
Inspire Record 2764820 DOI 10.17182/hepdata.150693

The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $σ(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $σ(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $σ(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=σ(tq)/σ(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/Λ^2 < 0.06$ and $-0.87 < C_{ϕQ}^{3}/Λ^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $σ(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.

21 data tables

The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.

The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.

The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)

More…

Search for cascade decays of charged sleptons and sneutrinos in final states with three leptons and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-045, 2025.
Inspire Record 2901728 DOI 10.17182/hepdata.157553

A search for cascade decays of charged sleptons and sneutrinos using final states characterized by three leptons (electrons or muons) and missing transverse momentum is presented. The analysis is based on a dataset with 140 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. This paper focuses on a supersymmetric scenario that is motivated by the muon anomalous magnetic moment observation, dark mattter relic density abundance, and electroweak naturalness. A mass spectrum involving light higgsinos and heavier sleptons with a bino at intermediate mass is targeted. No significant deviation from the Standard Model expectation is observed. This search enables to place stringent constraints on this model, excluding at the 95% confidence level charged slepton and sneutrino masses up to 450 GeV when assuming a lightest neutralino mass of 100 GeV and mass-degenerate selectrons, smuons and sneutrinos.

64 data tables

Distribution of $m_{3\ell}$ in SROS-on-$eee$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.

Distribution of $m_{3\ell}$ in SROS-on-$e\mu\mu$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.

Distribution of $E_{\text{T}}^{\text{miss}}$ in SROS-on-b-$eee$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.

More…

Search for long-lived charged particles using large specific ionisation loss and time of flight in 140 $fb^{-1}$ of $pp$ collisions at $\sqrt{s}\ = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-008, 2025.
Inspire Record 2878503 DOI 10.17182/hepdata.158643

This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of 140 $fb^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetime.

62 data tables

The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.

The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.

The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.

More…

Search for charged Higgs bosons produced in top-quark decays or in association with top quarks and decaying via $H^{\pm} \to \tau^{\pm}\nu_{\tau}$ in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 111 (2025) 072006, 2025.
Inspire Record 2862529 DOI 10.17182/hepdata.158153

Charged Higgs bosons produced either in top-quark decays or in association with a top-quark, subsequently decaying via $H^{\pm} \to \tau^{\pm}\nu_{\tau}$, are searched for in 140 $\text{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. Depending on whether the top-quark produced together with the $H^{\pm}$ decays hadronically or semi-leptonically, the search targets $\tau$+jets or $\tau$+lepton final states, in both cases with a $\tau$-lepton decaying into a neutrino and hadrons. No significant excess over the Standard Model background expectation is observed. For the mass range of $80 \leq m_{H^{\pm}} \leq 3000$ GeV, upper limits at 95% confidence level are set on the production cross-section of the charged Higgs boson times the branching fraction $\mathrm{\cal{B}}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$ in the range 4.5 pb-0.4 fb. In the mass range 80-160 GeV, assuming the Standard Model cross-section for $t\bar{t}$ production, this corresponds to upper limits between 0.27% and 0.02% on $\mathrm{\cal{B}}(t\to bH^{\pm}) \times \mathrm{\cal{B}}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$.

6 data tables

Observed and expected 95 % CL exclusion limits on $\sigma(pp\to tbH^+)\times \mathrm{\cal{B}}(H^+ \to \tau \nu)$ as a function of $m_{H^{\pm}}$, from a combined fit in the $\tau$+jets and $\tau$+lepton channels. The surrounding shaded bands correspond to the 1$\sigma$ and 2$\sigma$ confidence intervals around the expected limit.

Observed and expected 95 % CL exclusion limits on $\mathrm{\cal{B}}(t\to bH^+)\times \mathrm{\cal{B}}(H^+ \to \tau \nu)$ as a function of $m_{H^{\pm}}$, from a combined fit in the $\tau$+jets and $\tau$+lepton channels. The surrounding shaded bands correspond to the 1$\sigma$ and 2$\sigma$ confidence intervals around the expected limit.

Observed and expected 95 % CL exclusion limits on $\tan\beta$ as a function of $m_{H^{\pm}}$, shown in the context of the hMSSM scenario, for $m_{H^{\pm}}>150$ GeV and $(1 \leq \tan\beta \leq 60)$. The surrounding shaded bands correspond to the 1$\sigma$ and 2$\sigma$ confidence intervals around the expected limit.

More…

Observation of top-quark pair production in lead-lead collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 134 (2025) 142301, 2025.
Inspire Record 2849226 DOI 10.17182/hepdata.156982

Top-quark pair production is observed in lead-lead (Pb+Pb) collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of 1.9 nb$^{-1}$. Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross-section is $\sigma_{t\bar{t}} = 3.6\;^{+1.0}_{-0.9}\;\mathrm{(stat.)}\;^{+0.8}_{-0.5}\;\mathrm{(syst.)} ~\mathrm{\mu b}$, with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the pre-equilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early universe.

5 data tables

The figure shows the post-fit distribution of events as a function of the dilepton invariant mass ($m_{e\mu}$), in lead-lead (Pb+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV, with an integrated luminosity of 1.9 nb$^{-1}$. The data correspond to the SR1 (Signal Region 1 (SR\(_1\)):} Events with exactly one muon and one oppositely charged electron, a dilepton invariant mass \( m_{e\mu} \geq 30 \, \mathrm{GeV} \), at least two jets with \( p_T \geq 35 \, \mathrm{GeV} \), and a dilepton transverse momentum \( p_T^{e\mu} > 40 \, \mathrm{GeV} \). This region is expected to be signal-dominated) channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield.

The figure shows the post-fit distribution of events as a function of the dilepton invariant mass ($m_{e\mu}$), in lead-lead (Pb+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV, with an integrated luminosity of 1.9 nb$^{-1}$. The data correspond to the SR2 (Signal Region 2 (SR\(_2\)):} Events meeting the same criteria as SR\(_1\), but with a dilepton transverse momentum \( p_T^{e\mu} \leq 40 \, \mathrm{GeV} \). This region includes events with a lower \( p_T^{e\mu} \) and has a larger background contribution) channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield.

The impact of systematic uncertainties on the fitted signal-strength parameter $\hat{\mu}$ for the combined fit of all channels. Only the 10 most significant systematic uncertainties are shown and listed in decreasing order of their impact on $\mu$ on the $y$-axis. The empty (filled) blue/cyan boxes correspond to the pre-fit (post-fit) impact on $\mu$, referring to the upper $x$-axis. The impact of each systematic uncertainty, $\Delta \mu$, is calculated by comparing the nominal best-fit value of $\mu$ with the result of the fit when fixing the corresponding nuisance parameter $\theta$ to its best-fit value $\hat{\theta}$ shifted by its pre-fit (post-fit) uncertainties $\hat{\theta} \pm \Delta \theta(\hat{\theta} \pm \Delta \hat{\theta})$. The black points, which refer to the lower $x$-axis, show the pulls of the fitted nuisance parameters, i.e., the deviations of the fitted parameters $\hat{\theta}$ from their nominal values $\theta_0$, normalized to their nominal uncertainties $\Delta \theta$. The black lines show the post-fit uncertainties of the nuisance parameters, relative to their nominal uncertainties, which are indicated by the dashed lines.

More…

Search for a heavy charged Higgs boson decaying into a $W$ boson and a Higgs boson in final states with leptons and $b$-jets in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 02 (2025) 143, 2025.
Inspire Record 2846106 DOI 10.17182/hepdata.156777

This article presents a search for a heavy charged Higgs boson produced in association with a top quark and a bottom quark, and decaying into a $W$ boson and a $125$ GeV Higgs boson $h$. The search is performed in final states with one charged lepton, missing transverse momentum, and jets using proton-proton collision data at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector during Run 2 of the LHC at CERN. This data set corresponds to a total integrated luminosity of 140 fb$^{-1}$. The search is conducted by examining the reconstructed invariant mass distribution of the $Wh$ candidates for evidence of a localised excess in the charged Higgs boson mass range from $250$ GeV to $3$ TeV. No significant excess is observed and 95% confidence-level upper limits between $2.8$ pb and $1.2$ fb are placed on the production cross-section times branching ratio for charged Higgs bosons decaying into $Wh$.

31 data tables

Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the resolved analysis.

Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the merged analysis.

Product of acceptance and efficiency for pp->tbH(->Wh) as function of the charged Higgs boson mass for the resolved qqbb low-purity signal region.

More…

Search for supersymmetry in final states with missing transverse momentum and charm-tagged jets using 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 02 (2025) 193, 2025.
Inspire Record 2842361 DOI 10.17182/hepdata.155678

The paper presents a search for supersymmetric particles produced in proton-proton collisions at $\sqrt{s}=$ 13 TeV and decaying into final states with missing transverse momentum and jets originating from charm quarks. The data were taken with the ATLAS detector at the Large Hadron Collider at CERN from 2015 to 2018 and correspond to an integrated luminosity of 139 fb$^{-1}$. No significant excess of events over the expected Standard Model background expectation is observed in optimized signal regions, and limits are set on the production cross-sections of the supersymmetric particles. Pair production of charm squarks or top squarks, each decaying into a charm quark and the lightest supersymmetric particle $\tilde{\chi}^0_1$, is excluded at 95% confidence level for squarks with masses up to 900 GeV for scenarios where the mass of $\tilde{\chi}^0_1$ is below 50 GeV. Additionally, the production of leptoquarks with masses up to 900 GeV is excluded for the scenario where up-type leptoquarks decay into a charm quark and a neutrino. Model-independent limits on cross-sections and event yields for processes beyond the Standard Model are also reported.

160 data tables

Summary of material in this HEPData record. <br/><br/> Truth Code snippets, SLHA files, Madgraph process cards and UFO files for the leptoquark models are available under "Additional Resources" (purple button on the left). <br/><br/> <b>Contours:</b> <ul> SUSY exclusion limits (best-expected SR combination) <ul> <a href="155678?version=1&table=Contour1">Expected</a> <a href="155678?version=1&table=Contour3">+1$\sigma$</a> <a href="155678?version=1&table=Contour2">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour4">Observed</a> <a href="155678?version=1&table=Contour5">+1$\sigma$</a> <a href="155678?version=1&table=Contour6">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (best-expected SR combination) as a function of $\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ <ul> <a href="155678?version=1&table=Contour7">Expected</a> <a href="155678?version=1&table=Contour9">+1$\sigma$</a> <a href="155678?version=1&table=Contour8">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour10">Observed</a> <a href="155678?version=1&table=Contour11">+1$\sigma$</a> <a href="155678?version=1&table=Contour12">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM1) <ul> <a href="155678?version=1&table=Contour15">Expected</a> <a href="155678?version=1&table=Contour14">+1$\sigma$</a> <a href="155678?version=1&table=Contour13">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour18">Observed</a> <a href="155678?version=1&table=Contour16">+1$\sigma$</a> <a href="155678?version=1&table=Contour17">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM2) <ul> <a href="155678?version=1&table=Contour21">Expected</a> <a href="155678?version=1&table=Contour20">+1$\sigma$</a> <a href="155678?version=1&table=Contour19">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour24">Observed</a> <a href="155678?version=1&table=Contour22">+1$\sigma$</a> <a href="155678?version=1&table=Contour23">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM3) <ul> <a href="155678?version=1&table=Contour27">Expected</a> <a href="155678?version=1&table=Contour26">+1$\sigma$</a> <a href="155678?version=1&table=Contour25">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour30">Observed</a> <a href="155678?version=1&table=Contour28">+1$\sigma$</a> <a href="155678?version=1&table=Contour29">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp1) <ul> <a href="155678?version=1&table=Contour33">Expected</a> <a href="155678?version=1&table=Contour32">+1$\sigma$</a> <a href="155678?version=1&table=Contour31">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour36">Observed</a> <a href="155678?version=1&table=Contour34">+1$\sigma$</a> <a href="155678?version=1&table=Contour35">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp2) <ul> <a href="155678?version=1&table=Contour39">Expected</a> <a href="155678?version=1&table=Contour38">+1$\sigma$</a> <a href="155678?version=1&table=Contour37">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour42">Observed</a> <a href="155678?version=1&table=Contour40">+1$\sigma$</a> <a href="155678?version=1&table=Contour41">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp3) <ul> <a href="155678?version=1&table=Contour45">Expected</a> <a href="155678?version=1&table=Contour44">+1$\sigma$</a> <a href="155678?version=1&table=Contour43">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour48">Observed</a> <a href="155678?version=1&table=Contour46">+1$\sigma$</a> <a href="155678?version=1&table=Contour47">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp-1c) <ul> <a href="155678?version=1&table=Contour50">Expected</a> <a href="155678?version=1&table=Contour49">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=1$ GeV) <ul> <a href="155678?version=1&table=Contour51">Expected</a> <a href="155678?version=1&table=Contour53">+1$\sigma$</a> <a href="155678?version=1&table=Contour52">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour54">Observed</a> <a href="155678?version=1&table=Contour55">+1$\sigma$</a> <a href="155678?version=1&table=Contour56">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=200$ GeV) <ul> <a href="155678?version=1&table=Contour57">Expected</a> <a href="155678?version=1&table=Contour59">+1$\sigma$</a> <a href="155678?version=1&table=Contour58">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour60">Observed</a> <a href="155678?version=1&table=Contour61">+1$\sigma$</a> <a href="155678?version=1&table=Contour62">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{21}$ exclusion limits <ul> <a href="155678?version=1&table=Contour65">Expected</a> <a href="155678?version=1&table=Contour64">+1$\sigma$</a> <a href="155678?version=1&table=Contour63">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour68">Observed</a> <a href="155678?version=1&table=Contour66">+1$\sigma$</a> <a href="155678?version=1&table=Contour67">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{22}$ exclusion limits <ul> <a href="155678?version=1&table=Contour71">Expected</a> <a href="155678?version=1&table=Contour70">+1$\sigma$</a> <a href="155678?version=1&table=Contour69">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour74">Observed</a> <a href="155678?version=1&table=Contour72">+1$\sigma$</a> <a href="155678?version=1&table=Contour73">-1$\sigma$</a> <br/> </ul> </ul> <b>Cross-section upper limits:</b> <ul> SUSY signals (best-expected SR combination): <a href="155678?version=1&table=Cross-sectionupperlimit1">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit2">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit3">Observed</a> <br/> $U(1)$ pair (min) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit6">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit5">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit4">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit7">Observed</a> <br/> $U(1)$ pair (YM) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit10">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit9">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit8">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit11">Observed</a> <br/> </ul> <b>Signal region distributions:</b> <ul> <a href="155678?version=1&table=SRdistribution2">$E_\mathrm{T}^\mathrm{miss}$ Sig. in SR-HM1</a> <br/> <a href="155678?version=1&table=SRdistribution3">$m_\mathrm{T}^\mathrm{min}(c)$ in SR-HM2</a> <br/> <a href="155678?version=1&table=SRdistribution4">$R_\mathrm{ISR}$ in SR-Comp1</a> <br/> <a href="155678?version=1&table=SRdistribution5">$R_\mathrm{ISR}$ in SR-Comp2</a> <br/> <a href="155678?version=1&table=SRdistribution6">$R_\mathrm{ISR}$ in SR-Comp3</a> <br/> <a href="155678?version=1&table=SRdistribution1">$R_\mathrm{ISR}$ in SR-Comp-1c</a> <br/> </ul> <b>Acceptances:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptance2">SR-HM1</a> <a href="155678?version=1&table=Acceptance3">SR-HM2</a> <a href="155678?version=1&table=Acceptance4">SR-HM3</a> <a href="155678?version=1&table=Acceptance5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptance6">SR-Comp1</a> <a href="155678?version=1&table=Acceptance7">SR-Comp2</a> <a href="155678?version=1&table=Acceptance8">SR-Comp3</a> <a href="155678?version=1&table=Acceptance1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptance9">SR-HM1</a> <a href="155678?version=1&table=Acceptance10">SR-HM2</a> <a href="155678?version=1&table=Acceptance11">SR-HM3</a> <a href="155678?version=1&table=Acceptance12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptance13">SR-HM1</a> <a href="155678?version=1&table=Acceptance14">SR-HM2</a> <a href="155678?version=1&table=Acceptance15">SR-HM3</a> <a href="155678?version=1&table=Acceptance16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptance17">SR-HM1</a> <a href="155678?version=1&table=Acceptance18">SR-HM2</a> <a href="155678?version=1&table=Acceptance19">SR-HM3</a> <a href="155678?version=1&table=Acceptance20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptance21">SR-HM1</a> <a href="155678?version=1&table=Acceptance22">SR-HM2</a> <a href="155678?version=1&table=Acceptance23">SR-HM3</a> <a href="155678?version=1&table=Acceptance24">SR-HM-Disc</a> <br/> </ul> <b>Efficiencies:</b> <ul> $U(1)$ pair (min): <a href="155678?version=1&table=Efficiency1">SR-HM1</a> <a href="155678?version=1&table=Efficiency2">SR-HM2</a> <a href="155678?version=1&table=Efficiency3">SR-HM3</a> <a href="155678?version=1&table=Efficiency4">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Efficiency5">SR-HM1</a> <a href="155678?version=1&table=Efficiency6">SR-HM2</a> <a href="155678?version=1&table=Efficiency7">SR-HM3</a> <a href="155678?version=1&table=Efficiency8">SR-HM-Disc</a> <br/> </ul> <b>Acceptance times efficiency:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptancetimesefficiency2">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency3">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency4">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptancetimesefficiency6">SR-Comp1</a> <a href="155678?version=1&table=Acceptancetimesefficiency7">SR-Comp2</a> <a href="155678?version=1&table=Acceptancetimesefficiency8">SR-Comp3</a> <a href="155678?version=1&table=Acceptancetimesefficiency1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptancetimesefficiency9">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency10">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency11">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptancetimesefficiency13">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency14">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency15">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptancetimesefficiency17">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency18">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency19">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptancetimesefficiency21">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency22">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency23">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency24">SR-HM-Disc</a> <br/> </ul> <b>Cutflow:</b> <ul> SUSY benchmarks: <a href="155678?version=1&table=Cutflow5">SR-HM1</a> <a href="155678?version=1&table=Cutflow6">SR-HM2</a> <a href="155678?version=1&table=Cutflow7">SR-HM3</a> <a href="155678?version=1&table=Cutflow8">SR-HM-Disc</a> <a href="155678?version=1&table=Cutflow2">SR-Comp1</a> <a href="155678?version=1&table=Cutflow3">SR-Comp2</a> <a href="155678?version=1&table=Cutflow4">SR-Comp3</a> <a href="155678?version=1&table=Cutflow1">SR-Comp-1c</a> <br/> LQ benchmarks: <a href="155678?version=1&table=Cutflow9">SR-HM1</a> <a href="155678?version=1&table=Cutflow10">SR-HM2</a> <a href="155678?version=1&table=Cutflow11">SR-HM3</a> <a href="155678?version=1&table=Cutflow12">SR-HM-Disc</a> <br/> </ul>

Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.

Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.

More…

Search for supersymmetry using vector boson fusion signatures and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2024) 116, 2024.
Inspire Record 2835159 DOI 10.17182/hepdata.156776

This paper presents a search for supersymmetric particles in models with highly compressed mass spectra, in events consistent with being produced through vector boson fusion. The search uses 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. Events containing at least two jets with a large gap in pseudorapidity, large missing transverse momentum, and no reconstructed leptons are selected. A boosted decision tree is used to separate events consistent with the production of supersymmetric particles from those due to Standard Model backgrounds. The data are found to be consistent with Standard Model predictions. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a bino-like neutralino with a mass similar to that of the lightest chargino and second-to-lightest neutralino, both of which are wino-like. Lower limits at 95% confidence level on the masses of next-to-lightest supersymmetric partners in this simplified model are established between 117 and 120 GeV when the lightest supersymmetric partners are within 1 GeV in mass.

12 data tables

Observed and predicted background distributions of the BDT score in $\text{SR}_\text{2j}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.

Observed and predicted background distributions of the BDT score in $\text{SR}_{\geq3\text{j}}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the compressed SUSY simplified model with a bino-like LSP and wino-like NLSPs being considered. These are shown with $\pm1\sigma_\text{exp}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm1\sigma^{\text{SUSY}}_{\text{theory}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the ATLAS searches using the soft lepton signature is illustrated by the blue region while the limit imposed by the LEP experiments is shown in grey.

More…

Measurement of top-quark pair production in association with charm quarks in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Lett.B 860 (2025) 139177, 2025.
Inspire Record 2829504 DOI 10.17182/hepdata.154444

Inclusive cross-sections for top-quark pair production in association with charm quarks are measured with proton-proton collision data at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 140 fb$^{-1}$, collected with the ATLAS experiment at the LHC between 2015 and 2018. The measurements are performed by requiring one or two charged leptons (electrons and muons), two $b$-tagged jets, and at least one additional jet in the final state. A custom flavor-tagging algorithm is employed for the simultaneous identification of $b$-jets and $c$-jets. In a fiducial phase space that replicates the acceptance of the ATLAS detector, the cross-sections for $t\bar{t}+ {\geq} 2c$ and $t\bar{t}+1c$ production are measured to be $1.28^{+0.27}_{-0.24}\;\text{pb}$ and $6.4^{+1.0}_{-0.9}\;\text{pb}$, respectively. The measurements are primarily limited by uncertainties in the modeling of inclusive $t\bar{t}$ and $t\bar{t}+b\bar{b}$ production, in the calibration of the flavor-tagging algorithm, and by data statistics. Cross-section predictions from various $t\bar{t}$ simulations are largely consistent with the measured cross-section values, though all underpredict the observed values by 0.5 to 2.0 standard deviations. In a phase-space volume without requirements on the $t\bar{t}$ decay products and the jet multiplicity, the cross-section ratios of $t\bar{t}+ {\geq} 2c$ and $t\bar{t}+1c$ to total $t\bar{t}+\text{jets}$ production are determined to be $(1.23 \pm 0.25) \%$ and $(8.8 \pm 1.3) \%$.

22 data tables

Measured cross-section values in the fiducial phase space and inclusive volume for the various $t\bar{t}+jets$ categories.

Post-fit agreement between data and MC prediction for $SR_{\mathrm{loose}}^{1\ell5j}$ signal region, which uses the invariant mass of the two geometrically closest c-tagged jets, $m_{\mathit{cc}}^{\mathrm{min}\Delta R}$, as an observable. The hatched uncertainty bands include all uncertainties and their correlations. The last bins contain overflow events. "Other Top" includes single-top-quark production and associated production of $t\bar{t}$ and single top quarks with bosons. "Non-Top" includes W+jets, Z+jets, and diboson processes.

Post-fit agreement between data and MC prediction for the $SR_{\mathrm{tight}}^{1\ell5j}$ signal region, which uses the invariant mass of the two geometrically closest jets tagged with c@11%, $m_{\mathit{cc}}^{\mathrm{min}\Delta R}$, as an observable. The hatched uncertainty bands include all uncertainties and their correlations. The last bins contain overflow events. "Other Top" includes single-top-quark production and associated production of $t\bar{t}$ and single top quarks with bosons. "Non-Top" includes W+jets, Z+jets, and diboson processes.

More…

Combination of searches for singly produced vector-like top quarks in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 111 (2025) 012012, 2025.
Inspire Record 2818839 DOI 10.17182/hepdata.153640

A combination of searches for the single production of vector-like top quarks ($T$) is presented. These analyses are based on proton$-$proton collisions at $\sqrt{s}=13$ TeV recorded in 2015$-$2018 with the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. The $T$-quark decay modes considered in this combination are into a top quark and either a Standard Model Higgs boson or a $Z$ boson ($T \to Ht$ and $T \to Zt$). The individual searches used in the combination are differentiated by the number of leptons ($e$, $\mu$) in the final state. The observed data are found to be in good agreement with the Standard Model background prediction. Interpretations are provided for a range of masses and couplings of the vector-like top quark for benchmark models and generalized representations in terms of 95% confidence level limits. For a benchmark signal prediction of a vector-like top quark SU2 singlet with electroweak coupling, $\kappa$, of 0.5, masses below 2.1 TeV are excluded, resulting in the most restrictive limits to date.

52 data tables

Observed and expected 95% CL upper limits on the total cross-section σ($pp$ → $T$ → $Ht/Zt$) as a function of $T$-quark mass in the SU(2) singlet representation assuming $\kappa$=0.3. The expected limits for the individual analyses are shown. The $HtZt$ analysis is only included in the limit calculation for $m_{\mathrm{T}}$ < 2.1 TeV.

Observed and expected 95% CL upper limits on the total cross-section σ($pp$ → $T$ → $Ht/Zt$) as a function of $T$-quark mass in the SU(2) singlet representation assuming $\kappa$=0.5. The expected limits for the individual analyses are shown. The $HtZt$ analysis is only included in the limit calculation for $m_{\mathrm{T}}$ < 2.1 TeV.

Observed and expected 95% CL upper limits on the total cross-section σ($pp$ → $T$ → $Ht/Zt$) as a function of $T$-quark mass in the SU(2) doublet representation assuming $\kappa$=0.3. The expected limits for the individual analyses are shown. The $HtZt$ analysis is only included in the limit calculation for $m_{\mathrm{T}}$ < 2.1 TeV.

More…