Azimuthally anisotropic distributions of D$^0$, D$^+$ and D$^{*+}$ mesons were studied in the central rapidity region ($|y|<0.8$) in Pb-Pb collisions at a centre-of-mass energy $\sqrt{s_{\rm NN}} = 2.76$ TeV per nucleon-nucleon collision, with the ALICE detector at the LHC. The second Fourier coefficient $v_2$ (commonly denoted elliptic flow) was measured in the centrality class 30-50% as a function of the D meson transverse momentum $p_{\rm T}$, in the range 2-16 GeV/$c$. The measured $v_2$ of D mesons is comparable in magnitude to that of light-flavour hadrons. It is positive in the range $2 < p_{\rm T} < 6$ GeV/$c$ with $5.7\sigma$ significance, based on the combination of statistical and systematic uncertainties.
v2 vs. pt for D0. The first systematic (sys) error is that from the data analysis and the second is from the B feed-down subtraction, as explained in the paper.
v2 vs. pt for D+. The first systematic (sys) error is that from the data analysis and the second is from the B feed-down subtraction, as explained in the paper.
v2 vs. pt for D*+. The first systematic (sys) error is that from the data analysis and the second is from the B feed-down subtraction, as explained in the paper.
The $p_{\rm T}$-differential inclusive production cross sections of the prompt charmed mesons $D^0$, $D^+$, and $D^{*+}$ in the rapidity range |y|<0.5 were measured in proton-proton collisions at $\sqrt{s} = 7$ TeV at the LHC using the ALICE detector. Reconstructing the decays $D^0\rightarrow K^-\pi^+$, $D^+\rightarrow K^-\pi^+\pi^+$, $D^{*+}\rightarrow D^0\pi^+$, and their charge conjugates, about 8,400 $D^0$, 2,900 $D^+$, and 2,600 $D^{*+}$ mesons with 1<$p_{\rm T}$<24 GeV/$c$ were counted, after selection cuts, in a data sample of 3.14x10$^8$ events collected with a minimum-bias trigger (integrated luminosity $L_{\rm int}$ = 5/nb). The results are described within uncertainties by predictions based on perturbative QCD.
Differential cross section for prompt D0 production.
Differential cross section for prompt D+ production.
Differential cross section for prompt D*+ production.
We report the measurement of charged $D^*$ mesons in inclusive jets produced in proton-proton collisions at a center of mass energy $\sqrt{s}$ = 200 GeV with the STAR experiment at RHIC. For $D^{*}$ mesons with fractional momenta $0.2 < z < 0.5$ in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be $N(D^{*+}+D^{*-})/N(\mathrm{jet}) = 0.015 \pm 0.008 (\mathrm{stat}) \pm 0.007 (\mathrm{sys})$. This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization.
D*+-/jet azimuthal correlations. Delta Phi represents the difference in azimuthal angle between D*+- (of 2<Pt<10 GeV/c) and the jet's (of 8<Pt<20 GeV/c) axis.
Production rate of D*+- mesons with fractional longitudinal momenta 0.2<z<0.5 (z = Pl(D*+-)/Ejet, Pl is the momentum projection on the jet axis and Ejet is the total jet energy) in inclusive jets of 11.5 Gev mean transverse energy.
We report on measurements of differential cross sections d sigma/d p_t for prompt charm meson production in p anti-p collisions at s**(1/2) = 1.96 TeV using 5.8 +/- 0.3 pb-1 of data from the CDF II detector at the Fermilab Tevatron. The data are collected with a new trigger that is sensitive to the long lifetime of hadrons containing heavy flavor. The charm meson cross sections are measured in the central rapidity region |y| \leq 1 in four fully reconstructed decay modes: D0 --> K- pi+, D*+ -> D0 pi+, D+ --> K- pi+ pi+, D+_s--> phi pi+, and their charge conjugates. The measured cross sections are compared to theoretical calculations.
Measured prompt charm production cross sections for ABS(YRAP) < 1. The branching ratios used are (D0:3.81 +- 0.09 PCT), (D+:2.57 +- 0.06 PCT),(D+:9.1 +- 0.6 PCT) and (D/S+:1.8 +- 0.5 PCT).
A new precise measurement of |V_{cb}| and of the branching ratio BR(\bar{B^0} -> D^{*+} \ell^- \bar{\nu_\ell}) has been performed using a sample of about 5000 semileptonic decays \bar{B^0} -> D^{*+} \ell^- \bar{\nu_\ell}, selected by the DELPHI detector at LEP I by tagging the soft pion from D^{*+} -> D^0 \pi^+. The results are: V_{cb}=(39.0 +/- 1.5 (stat.) ^{+2.5}_{-2.6} (syst. exp.) +/- 1.3 (syst. th.)) x 10^{-3} BR(\bar{B^0} -> D^{*+} \ell^- \bar{\nu_\ell})=(4.70 +/- 0.13 (stat.) ^{+0.36}_{-0.31} (syst. exp.))% The analytic dependences of the differential cross-section and of the Isgur Wise form factor as functions of the variable w = v_{B^0}.v_{D^*} have also been obtained by unfolding the experimental resolution.
The formfactors are evaluated at zero recoil of D meson. VCB is the V-CKM (Cabibbo-Kobayashi-Maskawa) mixing matrix element. The value of FORMFACTOR(1) = 0.91 +- 0.03.
A study of the fragmentation properties of charm and bottom quarks intoD mesons is presented. From 263 700Z0 hadronic decays collected in 1991 with the DELPHI detector at the LEP collider,D0,D+ andD*+ are reconstructed in the modesK−π+,K−π+K+ andD0π+ followed byD0→K−π+, respectively. The fractional decay widths\(\Gamma {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} \mathord{\left/ {\vphantom {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} {\Gamma _h }}} \right. \kern-\nulldelimiterspace} {\Gamma _h }}\) are determined, and first results are presented for the production ofD mesons from\(c\bar c\) and\(b\bar b\) events separately. The average energy fraction ofD*± in charm quark fragmentation is found to be 〈XE(D*)〉c=0.487±0.015 (stat)±0.005 (sys.). Assuming that the fraction ofDs and charm-baryons produced at LEP is similar to that around 10 GeV, theZ0 partial width into charm quark pairs is determined to beΓc/Γh=0.187±0.031 (stat)±0.023 (sys). The probability for ab quark to fragment into\(\bar B_s \) orb-baryons is inferred to be 0.268±0.094 (stat)±0.100 (sys) from the measured probability that it fragments into a\(\bar B^0 \) orB−.
Using full data sample.
Using full data sample with proper time > 1 ps to enrich (b bbar) content.
Data with Delta(L) > 1.
In this paper an investigation of the production of D ∗ ± mesons produced in e + e − collisions at energies around the Z 0 pole is presented. Based on 115 D ∗ ± mesons with x D∗ 2E D ∗ /E cm > 0.2 the properties of D ∗ mesons produced in the reaction Z 0 → c c are studied. Fixing the yield and the fragmentation function of bottom quarks to the values obtained at LEP using lepton tags, and average energy fraction of the D ∗ ± mesons from primary charmed quarks of 〈x c → D ∗ 〉 = 0.52 ± 0.03 +- 0.01 is found and Γ z 0 →c c = (323 ± 61 ± 35) MeV is determined. The first error is the combined statistical and systematic error from this experiment, and the second the total error from other sources.
FD denotes the fraction of D* mesons from primary charmed quarks, derived from the fit (see text).
No description provided.
We have measured the polarization of D*, the energy dependence of the polarization, and the spin-density matrix of D* in e+e− annihilation at a center-of-mass energy of 29 GeV using the Time Projection Chamber detector at the SLAC storage ring PEP. In 147 pb−1 of data we see no strong evidence for polarization, alignment, or final-state interactions in this fragmentation process.
Polarization is the factor alpha(z) in the expression d width (D*-->D pi)/domega = C(1+alpha(z)cos(theta)**2).
Spin density matrices for D* --> D0 pi+.
The TPC/Two-Gamma Collaboration has measured the inclusive cross section for production of charmed D ∗± mesons in photon-photon collisions. The reaction utilized was e + e - →e + e - D ∗± X, with D ∗± →D O π +- , D O →K -+ π ± , and either zero or one outgoing e ± detected. The result, σ(e + e - → e + e - D ∗± X) = 74±26±19 pb , is in agreement with the quark parton mo del prediction for e + e - → e + e - c c , combined with a Lund model for the hadronization of the charmed quarks.
No description provided.
No description provided.
The production rate of charged D* mesons in jets has been measured in 1.8-TeV p¯p collisions at the Fermilab Tevatron with the Collider Detector at Fermilab. In a sample of approximately 32 300 jets with a mean transverse energy of 47 GeV obtained from an exposure of 21.1 nb−1, a signal corresponding to 25.0±7.5(stat)±2.0(syst) D*±→K∓π±π± events is seen above background. This corresponds to a ratio N(D*++D*−)/N(jet) =0.10±0.03±0.03 for D* mesons with fractional momentum z greater than 0.1.
Mean jet transverse energy is 47 GeV. Branching rates for D* --> D0 PI of 0.57 +- 0.04 (DSYS=0.04) and D0 --> K- PI+ of 0.042 +- 0.004 (DSYS=0.004), from MARK-III have been used.