Differential cross section of the pion nucleon charge-exchange reaction pi- p --> pi0 n in the momentum range from 148-MeV/c to 323-MeV/c.

The Crystal Ball collaboration Sadler, M.E. ; Kulbardis, A. ; Abaev, V. ; et al.
Phys.Rev.C 69 (2004) 055206, 2004.
Inspire Record 646714 DOI 10.17182/hepdata.31725

Measured values of the differential cross section for pion-nucleon charge exchange are presented at momenta 148, 174, 188, 212, 238, 271, 298, and 323 MeV/c, a region dominated by the Delta resonance. Complete angular distributions were obtained using the Crystal Ball detector at the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). Statistical uncertainties of the differential cross sections are typically 2-6%, exceptions being the results at the lowest momentum and at the most forward measurements of the five lowest momenta. We estimate the systematic uncertainties to be 3-6%.

3 data tables

The errors shown are statistical only.

The errors shown are statistical only.

The total charge-exchange reaction cross section as a function of pion momentum obtained by integrating the differential cross sections. The errors shown are the total and statistical errors.


THE STUDY OF THE NEUTRON STRANGE PARTICLES AND gamma QUANTUM PRODUCTION IN anti-d d INTERACTIONS AT 12-GeV/c

Batyunya, B.V. ; Boguslavsky, I.V. ; Bruncko, D. ; et al.
JINR-P1-87-802, 1987.
Inspire Record 253863 DOI 10.17182/hepdata.9417

None

9 data tables

No description provided.

No description provided.

No description provided.

More…

THE STUDY OF INCLUSIVE CHARACTERISTICS OF anti-d d INTERACTIONS AT 12-GeV/c

Batyunya, B.V. ; Boguslavsky, I.V. ; Bruncko, D. ; et al.
JINR-P1-87-849, 1987.
Inspire Record 253758 DOI 10.17182/hepdata.9416

None

8 data tables

THE BETTER FIT FOR PI- AND BARIONBAR IS THE SUM OF TWO EXPONENT: A*EXP(-B1*PT**2)+D*EXP(-B2*PT**2).FOR PI- B1=30+-4 AND B2=6.3+-.3 .FOR BARIONBAR B1=46+-18 AND B2=3.9+-.5.

No description provided.

No description provided.

More…

LAMBDA (1520) PRODUCTION IN NEUTRON - NUCLEON INTERACTIONS AT approximately 40-GeV NEUTRON ENERGY

Krastev, V.R. ; Aleev, A.N. ; Arefev, V.A. ; et al.
JINR-P1-88-31, 1988.
Inspire Record 261871 DOI 10.17182/hepdata.9450

None

6 data tables

AVERAGE OVER ALL TARGETS.

No description provided.

No description provided.

More…

THE STUDY OF anti-n n INTERACTIONS AT 6.1-GeV/c

The Dubna-Bucharest-Yerevan-Kosice-Moscow-Prague-Sofiya collaboration Batyunya, B.V. ; Boguslavsky, I.V. ; Bruncko, D. ; et al.
Sov.J.Nucl.Phys. 48 (1988) 475, 1988.
Inspire Record 253864 DOI 10.17182/hepdata.9420

None

21 data tables

No description provided.

No description provided.

No description provided.

More…

TOTAL CROSS-SECTION OF HADRON PHOTOPRODUCTION ON Be, C, H2O AND Al NUCLEI IN THE ENERGY RANGE E (gamma) = 200-MeV TO 900-MeV

Arakelian, E.A. ; Bayatian, G.L. ; Grigorian, N.K. ; et al.
EFI-730-45-84-YEREVAN, 1984.
Inspire Record 206946 DOI 10.17182/hepdata.2700

None

2 data tables

No description provided.

No description provided.


The pi- p ---> pi0 n charge-exchange cross-sections between 90 mev and 290 mev

Bugg, D.V. ; Bussey, P.J. ; Dance, D.R. ; et al.
Nucl.Phys.B 26 (1971) 588-596, 1971.
Inspire Record 68770 DOI 10.17182/hepdata.21877

Measurements have been made of the total charge-exchange cross section π − p to π 0 n over the laboratory kinetic energy range 90 to 290 MeV. The data have an absolute accuracy of typically 1%, and have here been used to determine the pion-nucleon P 13 phase shift.

4 data tables

QUADRATIC INTERPOLATION.

No description provided.

No description provided.

More…

Pion double charge exchange on the even selenium isotopes

Hui, P. ; Fortune, H.T. ; Kagarlis, M.A. ; et al.
Phys.Rev.C 51 (1995) 3169-3173, 1995.
Inspire Record 405740 DOI 10.17182/hepdata.25895

Pion-induced double charge exchange (π+,π−) on Se76,78,80,82, leading to the double isobaric analog states (DIAS) and the ground states of Kr76,78,80,82, has been studied at a laboratory angle of 50 and incident pion kinetic energy of 293.2 MeV. Cross sections for these transitions have been extracted, and those for the DIAS are compared to two simple models of pion double charge exchange.

1 data table

No description provided.


Search for double-Lambda hypernuclei and the H dibaryon in the (K-,K+) reaction on C-12.

The E885 collaboration Yamamoto, K. ; Alburger, D.E. ; Barnes, P.D. ; et al.
Phys.Lett.B 478 (2000) 401-407, 2000.
Inspire Record 528779 DOI 10.17182/hepdata.28030

A search for double- Λ hypernuclei ( 12 ΛΛ Be) and H -dibaryons using the 12 C( K − , K + ) reaction was performed at the BNL-AGS using a high-intensity 1.8 GeV/ c K − beam. A missing-mass analysis below the end point of the quasi-free Ξ − production was used to investigate these S =−2 systems. The upper limit obtained for the forward-angle cross section of 12 ΛΛ Be production is 6 to 10 nb/sr. This is the first search for the direct production of double- Λ hypernuclei to reach the sensitivity required to observe the signal predicted by theoretical calculations. For the H -production cross section, we have obtained an upper limit in the range of a few nb/sr to 10 nb/sr for the H mass below 2100 MeV/ c 2 . This upper limit is the most sensitive H search result to date for a tightly bound H .

2 data tables

Upper limit is given.

The production of the H-dibaryon could occur via the (K-, K+) reaction on two protons in a nucleus: K- (PP) --> K+ H-dibaryon. Upper limit is given.


THE C (ALPHA, X) C-11 CROSS-SECTIONS AT 1.59-GEV AND 4.19-GEV

Geaga, J.V. ; Gazzaly, M.M. ; Igo, G.J. ; et al.
Nucl.Phys.A 386 (1982) 589-598, 1982.
Inspire Record 183652 DOI 10.17182/hepdata.37081

The absolute cross sections for the production of 11 C by 1.59 GeV and 4.19 GeV α-particles incident on natural carbon have been measured to be 46.4 ± 1.3 mb and 42.5 ± 1.1 mb respectively. These results, together with data reported at other energies, indicate that the C(α, X) 11 C cross section becomes approximately constant at a value of about 43 mb for energies above 3 GeV (750 MeV/n). A similar energy dependence is exhibited by the C(p, X) 11 C reaction whose cross section has been measured previously over an extensive energy range. The C(α, X) 11 C cross sections are found to be in good agreement with predictions of a semi-empirical model developed to describe nuclear fragmentation.

1 data table

ALL SYSTEMATICAL ERRORS WERE INCLUDED INTO TABULATED ERRORS.