Flow measurements via two-particle azimuthal correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 89 (2002) 212301, 2002.
Inspire Record 585347 DOI 10.17182/hepdata.141931

Two particle azimuthal correlation functions are presented for charged hadrons produced in Au + Au collisions at RHIC sqrt(s_NN) = 130 GeV. The measurements permit determination of elliptic flow without event-by-event estimation of the reaction plane. The extracted elliptic flow values v_2 show significant sensitivity to both the collision centrality and the transverse momenta of emitted hadrons, suggesting rapid thermalization and relatively strong velocity fields. When scaled by the eccentricity of the collision zone, epsilon, the scaled elliptic flow shows little or no dependence on centrality for charged hadrons with relatively low p_T. A breakdown of this epsilon scaling is observed for charged hadrons with p_T > 1.0 GeV/c for the most central collisions.

8 data tables

Azimuthal correlation functions for charged hadrons as a function of centrality and $p_T$ selection. The solid curves represent Fourier fits following Eq. (2). Error bars are statistical only.

$v_2$ vs. centrality for several $p_T$ selections. [F] and [A] indicate results obtained with the fixed-$p_T$ and assorted-$p_T$ methods respectively. Systematic errors are estimated to be $\sim 5$%; they are dominated by the normalization of the correction function for real tracks. For the centrality range 0-5%, the data points are statistically uncertain and the points are omitted.

$v_2$ vs. centrality for several $p_T$ selections. [F] and [A] indicate results obtained with the fixed-$p_T$ and assorted-$p_T$ methods respectively. Systematic errors are estimated to be $\sim 5$%; they are dominated by the normalization of the correction function for real tracks. For the centrality range 0-5%, the data points are statistically uncertain and the points are omitted.

More…

Measurement of $\Upsilon$(1S+2S+3S) production in $p$$+$$p$ and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 91 (2015) 024913, 2015.
Inspire Record 1289084 DOI 10.17182/hepdata.141940

Measurements of bottomonium production in heavy ion and $p$$+$$p$ collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The inclusive yield of the three $\Upsilon$ states, $\Upsilon(1S+2S+3S)$, was measured in the PHENIX experiment via electron-positron decay pairs at midrapidity for Au$+$Au and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The $\Upsilon(1S+2S+3S)\rightarrow e^+e^-$ differential cross section at midrapidity was found to be $B_{\rm ee} d\sigma/dy =$ 108 $\pm$ 38 (stat) $\pm$ 15(syst) $\pm$ 11 (luminosity) pb in $p$$+$$p$ collisions. The nuclear modification factor in the 30\% most central Au$+$Au collisions indicates a suppression of the total $\Upsilon$ state yield relative to the extrapolation from $p$$+$$p$ collision data. The suppression is consistent with measurements made by STAR at RHIC and at higher energies by the CMS experiment at the Large Hadron Collider.

4 data tables

Summary of the measured $\Upsilon$ invariant multiplicities, $BdN/dy$, for one $p + p$ three Au + Au data sets.

Summary of the measured $\Upsilon$ nuclear modification factors, $R_{AA}$, for Au + Au data sets.

Summary of the measured $\Upsilon$ nuclear modification factors, $R_{AA}$, for Au + Au data sets.

More…

System size and energy dependence of jet-induced hadron pair correlation shapes in Cu + Cu and Au + Au collisions at s(NN)**(1/2) = 200-GeV and 62.4-GeV.

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.Lett. 98 (2007) 232302, 2007.
Inspire Record 731669 DOI 10.17182/hepdata.142605

We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.

6 data tables

The measured correlation $C(\Delta\phi)$ and the dijet correlation $J(\Delta\phi)$ in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Dijet correlations in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV.

Dijet correlations in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV.

More…

Common suppression pattern of eta and pi0 mesons at high transverse momentum in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 96 (2006) 202301, 2006.
Inspire Record 709321 DOI 10.17182/hepdata.141855

Inclusive transverse momentum spectra of eta mesons have been measured within p_T = 2-10 GeV/c at mid-rapidity by the PHENIX experiment in Au+Au collisions at sqrt(s_NN) = 200 GeV. In central Au+Au the eta yields are significantly suppressed compared to peripheral Au+Au, d+Au and p+p yields scaled by the corresponding number of nucleon-nucleon collisions. The magnitude, centrality and p_T dependence of the suppression is common, within errors, for eta and pi^0. The ratio of eta to pi^0 spectra at high p_T amounts to 0.40 < R_eta/pi^0 < 0.48 for the three systems in agreement with the world average measured in hadronic and nuclear reactions and, at large scaled momentum, in e^+e^- collisions.

10 data tables

Invariant $\eta$ yields as a function of transverse momentum for 3 centralities and MB Au+Au at $\sqrt{s_{NN}}$ = 200 GeV.

Invariant $\eta$ yields as a function of transverse momentum for 3 centralities and MB Au+Au at $\sqrt{s_{NN}}$ = 200 GeV.

Nuclear modification factors for $\eta$ in Au+Au centralities.

More…

Measurements of elliptic and triangular flow in high-multiplicity $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 115 (2015) 142301, 2015.
Inspire Record 1384274 DOI 10.17182/hepdata.141742

We present the first measurement of elliptic ($v_2$) and triangular ($v_3$) flow in high-multiplicity $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in $^{3}$He$+$Au and in $p$$+$$p$ collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the $^{3}$He$+$Au system. The collective behavior is quantified in terms of elliptic $v_2$ and triangular $v_3$ anisotropy coefficients measured with respect to their corresponding event planes. The $v_2$ values are comparable to those previously measured in $d$$+$Au collisions at the same nucleon-nucleon center-of-mass energy. Comparison with various theoretical predictions are made, including to models where the hot spots created by the impact of the three $^{3}$He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.

1 data table

Results for $v_2$ and $v_3$ as a function of $p_T$ for inclusive charged hadrons at midrapidity in 0-5% central $^3$He+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.


Particle-species dependent modification of jet-induced correlations in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 101 (2008) 082301, 2008.
Inspire Record 770833 DOI 10.17182/hepdata.142338

We report PHENIX measurements of the correlation of a trigger hadron at intermediate transverse momentum (2.5<p_{T,trig}<4 GeV/c), with associated mesons or baryons at lower p_{T,assoc}, in Au+Au collisions at sqrt(s_NN) = 200 GeV. The jet correlations for both baryons and mesons show similar shape alterations as a function of centrality, characteristic of strong modification of the away-side jet. The ratio of jet-associated baryons to mesons for this jet increases with centrality and p_{T,assoc} and, in the most central collisions, reaches a value similar to that for inclusive measurements. This trend is incompatible with in-vacuum fragmentation, but could be due to jet-like contributions from correlated soft partons which recombine upon hadronization.

10 data tables

<p>Correlation functions for associated partner mesons for centrality selections of 20-40% and 70-90%.</p> <p><i>Note that only statistical uncertainties are available.</i></p>

<p>Correlation functions for associated partner baryons for centrality selections of 20-40% and 70-90%.</p> <p><i>Note that only statistical uncertainties are available.</i></p>

<p>Jet-pair distributions for associated mesons for $1 < p_{T,assoc} < 1.3\ \mathrm{GeV}/c$ and $1.6 < p_{T,assoc} < 2.0\ \mathrm{GeV}/c$. Results are for a hadron trigger $2.5 < p_T < 4.0\ \mathrm{GeV}/c$ and centrality selections of 0-20% and 20-40%.</p> <p><i>Note that only statistical uncertainties are available.</i></p>

More…

Azimuthal-angle dependence of charged-pion-interferometry measurements with respect to 2$^{\rm nd}$- and $3^{\rm rd}$-order event planes in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 112 (2014) 222301, 2014.
Inspire Record 1279634 DOI 10.17182/hepdata.141895

Charged-pion-interferometry measurements were made with respect to the 2$^{\rm nd}$- and 3$^{\rm rd}$-order event plane for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the 2$^{\rm nd}$- and 3$^{\rm rd}$-order event planes. The results for the 2$^{\rm nd}$-order dependence indicate that the initial eccentricity is reduced during the medium evolution, but not reversed in the final state, which is consistent with previous results. In contrast, the results for the 3$^{\rm rd}$-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the 3$^{\rm rd}$-order oscillations are largely dominated by the dynamical effects from triangular flow.

5 data tables

The azimuthal dependence of $R^2_s$, $R^2_o$, $R^2_l$, and $R^2_{os}$ for charged pions in 0.2 < $k_T$ < 2.0 GeV/$c$ with respect to second-(a)-(d) and third-order (e)-(h) event plane in Au + Au collisions at $\sqrt{S_{NN}}$ 200 GeV.

The azimuthal dependence of $R^2_s$, $R^2_o$, $R^2_l$, and $R^2_{os}$ for charged pions in 0.2 < $k_T$ < 2.0 GeV/$c$ with respect to second-(a)-(d) and third-order (e)-(h) event plane in Au + Au collisions at $\sqrt{S_{NN}}$ 200 GeV.

The solid points are the oscillation amplitudes relative to the average of HBT radii for four different combinations (a) $2R^{2}_{s,n}/R^{2}_{s,0}$, (b) $2R^{2}_{os,n}/R^{2}_{s,0}$, (c) $2R^{2}_{o,n}/R^{2}_{o,0}$, and (d) $2R^{2}_{o,n}/R^{2}_{s,0}$ as a function of initial spatial anisotropy ($\varepsilon_{n}$), which are calculated using the Glauber model.

More…

Inclusive cross section and double helicity asymmetry for pi^0 production in p+p collisions at sqrt(s) = 62.4 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 79 (2009) 012003, 2009.
Inspire Record 798469 DOI 10.17182/hepdata.142076

The PHENIX experiment presents results from the RHIC 2006 run with polarized proton collisions at sqrt(s) = 62.4 GeV for inclusive pi^0 production at mid-rapidity. Unpolarized cross section results are measured for transverse momenta p_T = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum chromodynamics calculations are compared with the data, and while the calculations are consistent with the measurements, next-to-leading logarithmic corrections improve the agreement. Double helicity asymmetries A_LL are presented for p_T = 1 to 4 GeV/c and probe the higher range of Bjorken_x of the gluon (x_g) with better statistical precision than our previous measurements at sqrt(s)=200 GeV. These measurements are sensitive to the gluon polarization in the proton for 0.06 < x_g < 0.4.

4 data tables

The fraction of inclusive $\pi^0$ yield which satisfied the BBC trigger condition.

The neutral pion production cross section at $\sqrt{s}$ = 62.4 GeV as a function of $p_T$ and the results of next-to-leading order (NLO) and next-to-leading logarithmic accuracy (NLL) perturbative Quantum Chromodynamics (pQCD) calculations for the theory scale $\mu$ = $p_T$.

The parameter $n$ obtained from the ratio of invariant cross section at $\sqrt{s}$ = 62.4 GeV and $\sqrt{s}$ = 200GeV, at each $x_T$ of $\sqrt{s}$ = 62.4 GeV data; error bars show the statistical and systematic uncertainties of the $\sqrt{s}$ = 62.4 GeV and $\sqrt{s}$ = 200 GeV data.

More…

Heavy Quark Production in p+p and Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 044905, 2011.
Inspire Record 854475 DOI 10.17182/hepdata.142339

Transverse momentum (p^e_T) spectra of electrons from semileptonic weak decays of heavy flavor mesons in the range of 0.3 < p^e_T < 9.0 GeV/c have been measured at mid-rapidity (|eta| < 0.35) by the PHENIX experiment at the Relativistic Heavy Ion Collider in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The nuclear modification factor R_AA with respect to p+p collisions indicates substantial energy loss of heavy quarks in the produced medium. In addition, the azimuthal anisotropy parameter v_2 has been measured for 0.3 < p^e_T < 5.0 GeV/c in Au+Au collisions. Comparisons of R_AA and v_2 are made to various model calculations.

12 data tables

Charm cross section per $N$+$N$ collision in centrality bins in Au+Au and $p$+$p$. $T_{AA}$ is the nuclear overlap integral of the centrality.

Charm cross section per $N$+$N$ collision in centrality bins in Au+Au and $p$+$p$. $T_{AA}$ is the nuclear overlap integral of the centrality.

Heavy-flavor $e^{\pm}$ $v_2$ from Au+Au collisions, for the centralities indicated.

More…

Measurement of emission angle anisotropy via long-range angular correlations with high $p_T$ hadrons in $d$$+$Au and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 98 (2018) 014912, 2018.
Inspire Record 1638373 DOI 10.17182/hepdata.141453

We present measurements of two-particle angular correlations between high-transverse-momentum ($2<p_T<11$ GeV/$c$) $\pi^0$ observed at midrapidity ($|\eta|<0.35$) and particles produced either at forward ($3.1<\eta<3.9$) or backward ($-3.7<\eta<-3.1$) rapidity in $d$$+$Au and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The azimuthal angle correlations for particle pairs with this large rapidity gap in the Au-going direction exhibit a ridge-like structure that persists up to $p_T{\approx}6$ GeV/$c$ and which strongly depends on collision centrality, which is a similar characteristic to the hydrodynamical particle flow in A+A collisions. The ridge-like structure is absent in the $d$-going direction as well as in $p$$+$$p$ collisions, in the transverse-momentum range studied. The results indicate that the ridge-like structure is shifted in the Au-going direction toward more central collisions, similar to the charged-particle pseudorapidity distributions.

8 data tables

Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: (a) the negative of the dipole coefficient, $-c_1$; (b) the quadrupole coefficient $c_2$; (c) the ratio ${-c_2}/{c_1}$.

Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: Fractional systematic uncertainty on the quadrupole coefficient $c_2$ for $d$+Au.

Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: Fractional systematic uncertainty on the quadrupole coefficient $c_2$ for $p$+$p$.

More…