The HEPData database will be migrated to a new host between 08:00 and 09:00 (UTC) on 25th June 2025, leading to a few minutes of downtime.
Showing 10 of 73 results
The cross section for the process $e^+e^-\to\pi^+\pi^-$ is measured in the c.m. energy range 1.04-1.38 GeV from 995 000 selected collinear events including 860000 $e^+e^-$ events, 82000 $\mu^+\mu^-$ events, and 33000 $\pi^+\pi^-$ events. The systematic and statistical errors of measuring the pion form factor are equal to 1.2-4.2 and 5-13%, respectively.
Measured value of the pion form factor
The pion electromagnetic form factor has been measured at the VEPP-2M collider in the c.m. energy range 360 MeV–1400 MeV with the detectors OLYA and CMD. On the basis of all available data for the pion form factor collected in the timelike region, the following values for ρ-meson parameters were obtained: m ρ = 775.9 ± 1.1 MeV, σ ρ = 150.5 ± 3.0 MeV. The ω-meson branching ratio into π + π − pair, electromagnetic radius of the pion, ππ scattering length in the P-wave and the strong interaction contribution to the muon ( g − 2) value were found to be B ωππ = (2.3 ± 0.4)%, 〈 r π 2 〉 = 0.422 ± 0.013 fm 2 , a 1 1 = 0.033 ± 0.033m π −3 , a H = (68.4 ± 1.1) × 10 −9 .
Experimental data from the OLYA detector
Experimental data from the CMD detector
On the electron-positron storage ring VEPP-2M using the Cryogenic Magnetic Detector, the cross section of the e+e- -> π+π-π0 process was measured in the energy range 2x420-2x510 MeV. The energy dependence of the cross section is consistent with the predictions of the vector dominance model taking into account the interference of omega and phi mesons. The optimal value of the omega-phi interference phase is 136+-36+-10 degree.
The Born cross section of the process e+e- -> pi+pi-pi0.
None
Fitted peak cross section.
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Fiducial phase-space cross-section at particle level.
$p_{T}^{t,1}$ absolute differential cross-section at particle level.
$|{y}^{t,1}|$ absolute differential cross-section at particle level.
$p_{T}^{t}$ normalized differential cross-section at particle level.
$|y^{t}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}$ normalized differential cross-section at particle level.
$|{y}^{t,1}|$ normalized differential cross-section at particle level.
$p_{T}^{t,2}$ normalized differential cross-section at particle level.
$|{y}^{t,2}|$ normalized differential cross-section at particle level.
$m^{t\bar{t}}$ normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Fiducial phase-space cross-section at parton level.
$p_{T}^{t,1}$ absolute differential cross-section at parton level.
$|y^{t,1}|$ absolute differential cross-section at parton level.
$p_{T}^{t}$ normalized differential cross-section at parton level.
$|y^{t}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}$ normalized differential cross-section at parton level.
$|y^{t,1}|$ normalized differential cross-section at parton level.
$p_{T}^{t,2}$ normalized differential cross-section at parton level.
$|{y}^{t,2}|$ normalized differential cross-section at parton level.
$m^{t\bar{t}}$ normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t,1}$ covariance matrix for the absolute differential cross-section at particle level.
$|{y}^{t,1}|$ covariance matrix for the absolute differential cross-section at particle level.
$p_{T}^{t}$ covariance matrix for the normalized differential cross-section at particle level.
$|y^{t}|$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t,1}$ covariance matrix for the normalized differential cross-section at particle level.
$|{y}^{t,1}|$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t,2}$ covariance matrix for the normalized differential cross-section at particle level.
$|{y}^{t,2}|$ covariance matrix for the normalized differential cross-section at particle level.
$m^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ covariance matrix for the normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ covariance matrix for the normalized differential cross-section at particle level.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute normalized cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t,1}$ covariance matrix for the absolute differential cross-section at parton level.
$|y^{t,1}|$ covariance matrix for the absolute differential cross-section at parton level.
$p_{T}^{t}$ covariance matrix for the normalized differential cross-section at parton level.
$|y^{t}|$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t,1}$ covariance matrix for the normalized differential cross-section at parton level.
$|y^{t,1}|$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t,2}$ covariance matrix for the normalized differential cross-section at parton level.
$|{y}^{t,2}|$ covariance matrix for the normalized differential cross-section at parton level.
$m^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ covariance matrix for the normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ covariance matrix for the normalized differential cross-section at parton level.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}| $normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Proton-proton interactions resulting in final states with two photons are studied in a search for the signature of flavor-changing neutral current interactions of top quarks (t) and Higgs bosons (H). The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. No significant excess above the background prediction is observed. Upper limits on the branching fractions ($\mathcal{B}$) of the top quark decaying to a Higgs boson and an up (u) or charm quark (c) are derived through a binned fit to the diphoton invariant mass spectrum. The observed (expected) 95% confidence level upper limits are found to be 0.019 (0.031)% for $\mathcal B$(t $\to$ Hu) and 0.073 (0.051)% for $\mathcal{B}$(t $\to$ Hc). These are the strictest upper limits yet determined.
Expected and observed 95\% CL upper limits on the branching fraction of the top quark decaying to the Higgs boson and a light-flavor quark (either an up or a charm quark)
We report the first measurements of the moments -- mean ($M$), variance ($\sigma^{2}$), skewness ($S$) and kurtosis ($\kappa$) -- of the net-charge multiplicity distributions at mid-rapidity in Au+Au collisions at seven energies, ranging from $\sqrt {{s_{\rm NN}}}$= 7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net-charge, and are sensitive to the proximity of the QCD critical point. We compare the products of the moments, $\sigma^{2}/M$, $S\sigma$ and $\kappa\sigma^{2}$ with the expectations from Poisson and negative binomial distributions (NBD). The $S\sigma$ values deviate from Poisson and are close to NBD baseline, while the $\kappa\sigma^{2}$ values tend to lie between the two. Within the present uncertainties, our data do not show non-monotonic behavior as a function of collision energy. These measurements provide a distinct way of determining the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.
The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 7.7 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 11.5 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 19.6 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 27 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 39 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 62.4 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 200 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected standard deviation ($\sigma$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 7.7 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected standard deviation ($\sigma$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 11.5 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected standard deviation ($\sigma$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 19.6 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected standard deviation ($\sigma$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 27 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected standard deviation ($\sigma$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 39 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected standard deviation ($\sigma$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 62.4 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected standard deviation ($\sigma$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 200 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected skewness ($S$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 7.7 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected skewness ($S$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 11.5 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected skewness ($S$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 19.6 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected skewness ($S$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 27 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected skewness ($S$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 39 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected skewness ($S$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 62.4 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected skewness ($S$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 200 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected kurtosis ($\kappa$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 7.7 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected kurtosis ($\kappa$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 11.5 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected kurtosis ($\kappa$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 19.6 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected kurtosis ($\kappa$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 27 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected kurtosis ($\kappa$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 39 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected kurtosis ($\kappa$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 62.4 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected kurtosis ($\kappa$) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 200 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $S\sigma$ of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 7.7 GeV. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $S\sigma$ of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 11.5 GeV. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $S\sigma$ of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 19.6 GeV. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $S\sigma$ of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 27 GeV. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $S\sigma$ of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 39 GeV. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $S\sigma$ of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 62.4 GeV. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $S\sigma$ of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 200 GeV. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $\kappa\sigma^2$ of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 7.7 GeV. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $\kappa\sigma^2$ of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 11.5 GeV. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $\kappa\sigma^2$ of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 19.6 GeV. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $\kappa\sigma^2$ of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 27 GeV. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $\kappa\sigma^2$ of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 39 GeV. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $\kappa\sigma^2$ of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 62.4 GeV. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $\kappa\sigma^2$ of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 200 GeV. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected $\sigma^2/M$ of the net-charge multiplicity distributions as a function of collision energy for Au+Au collisions. The error bars are statistical and the caps represent systematic errors.
The efficiency and centrality bin width corrected $S\sigma^2$ of the net-charge multiplicity distributions as a function of collision energy for Au+Au collisions. The error bars are statistical and the caps represent systematic errors.
The efficiency and centrality bin width corrected $\kappa\sigma^2$ of the net-charge multiplicity distributions as a function of collision energy for Au+Au collisions. The error bars are statistical and the caps represent systematic errors.
We present STAR measurements of azimuthal anisotropy by means of the two- and four-particle cumulants $v_2$ ($v_2\{2\}$ and $v_2\{4\}$) for Au+Au and Cu+Cu collisions at center of mass energies $\sqrt{s_{_{\mathrm{NN}}}} = 62.4$ and 200 GeV. The difference between $v_2\{2\}^2$ and $v_2\{4\}^2$ is related to $v_{2}$ fluctuations ($\sigma_{v_2}$) and nonflow $(\delta_{2})$. We present an upper limit to $\sigma_{v_2}/v_{2}$. Following the assumption that eccentricity fluctuations $\sigma_{\epsilon}$ dominate $v_2$ fluctuations $\frac{\sigma_{v_2}}{v_2} \approx \frac{\sigma_{\epsilon}}{\epsilon}$ we deduce the nonflow implied for several models of eccentricity fluctuations that would be required for consistency with $v_2\{2\}$ and $v_2\{4\}$. We also present results on the ratio of $v_2$ to eccentricity.
The two-particle cumulant $v_2\{2\}^2$ for Au+Au collisions at 200 and 62.4 GeV. Results are shown with like-sign combinations (LS) and charge-independent results (CI) for $0.15 < p_T < 2.0$ GeV/$c$.
The same as the left but for Cu+Cu collisions. The systematic errors are shown as thin lines with wide caps at the ends and statistical errors are shown as thick lines with small caps at the end. Statistical and systematic errors are very small.
The difference of charge-independent (CI) v2{2} and like-sign (LS) $v_2\{2\}$ for Au+Au and Cu+Cu collisions at 200 (top panel) and 62.4 (bottom panel) GeV vs. the log of $\langle dN_{ch}/d\eta\rangle$.The statistical errors are smaller than the marker size and not visible for most of the data.
The difference of charge-independent (CI) v2{2} and like-sign (LS) $v_2\{2\}$ for Au+Au and Cu+Cu collisions at 200 (top panel) and 62.4 (bottom panel) GeV vs. the log of $\langle dN_{ch}/d\eta\rangle$.The statistical errors are smaller than the marker size and not visible for most of the data.
The LS and CI four-particle cumulant $v_2\{4\}^4$ for Au+Au collisions at 200 and 62.4 GeV for $0.15 < pT < 2.0$ GeV/$c$. The systematic errors are shown as narrow lines with wide caps at the end and statistical errors are shown as thick lines with narrow caps at the end. Statistical errors are not visible for most of the points.
The LS and CI four-particle cumulant $v_2\{4\}^4$ for Cu+Cu collisions at 200 and 62.4 GeV for $0.15 < p_T < 2.0$ GeV/c. The most central points (two points for Cu+Cu 62.4 GeV) gives $v_2\{4\}^4 < 0$ for all the data sets. The negative values are probably due to large fluctuations in agreement with Eq. (1). These may include contributions from impact parameter spread and finite multiplicity bin width.
The difference of charge-independent (CI) $v_2\{4\}$ and like-sign (LS) $v_2\{4\}$ for Au+Au collisions at 200 and 62.4 GeV vs. the log of $\langle dN_{ch}/d\eta\rangle$.
(Left) The difference between $v_2\{2\}^2$ and $v_2\{4\}^2$ for 200 GeV Au+Au and Cu+Cu collisions for both LS and CI combinations.
(Right) The difference between $v_2\{2\}^2$ and $v_2\{4\}^2$ for 62.4 GeV Au+Au and Cu+Cu collisions for both LS and CI combinations. The statistical and systematic errors are shown as in previous figures.
The upper limit on $\sigma_{v_2}/\langle v_2 \rangle$ for 200 GeV (left) and 62.4 GeV (right) Au+Au collisions from Eq. (9) compared to $\sigma_\varepsilon/\varepsilon$ from Eq. (10) for three different models. The upper limit is found using the LS results for $v_2\{2\}$. Data are from the range $0.15 < p_T < 2.0$ GeV/$c$. The shaded bands reflect the uncertainties on the models which are dominated by uncertainty on the distribution of nucleons inside the nucleus. The uncertainty is only shown for the MCG-N and fKLN-CGC models. The uncertainty on the MCG-Q model is the same as for the MCG-N model but is not shown for the visual clarity.
The upper limit on $\sigma_{v_2}/\langle v_2 \rangle$ for 200 GeV (left) and 62.4 GeV (right) Au+Au collisions from Eq. (9) compared to $\sigma_\varepsilon/\varepsilon$ from Eq. (10) for three different models. The upper limit is found using the LS results for $v_2\{2\}$. Data are from the range $0.15 < p_T < 2.0$ GeV/$c$. The shaded bands reflect the uncertainties on the models which are dominated by uncertainty on the distribution of nucleons inside the nucleus. The uncertainty is only shown for the MCG-N and fKLN-CGC models. The uncertainty on the MCG-Q model is the same as for the MCG-N model but is not shown for the visual clarity.
The STAR data compared to PHOBOS data [34] on $\sigma_{v_2}/\langle v_2 \rangle$ with $\delta_2$ for $\Delta\eta > 2$ taken to be zero (see Fig. 6 from Ref. [34]). The shaded band shows the errors quoted from Ref. [34].
The upper limit on $\sigma_{v_2}/\langle v_2 \rangle$ for 200 GeV (left) and 62.4 GeV (right) Cu+Cu collisions from Eq. (9) compared to $\sigma_\varepsilon/\varepsilon$ from Eq. (10) for three different models.
The upper limit on $\sigma_{v_2}/\langle v_2 \rangle$ for 200 GeV (left) and 62.4 GeV (right) Cu+Cu collisions from Eq. (9) compared to $\sigma_\varepsilon/\varepsilon$ from Eq. (10) for three different models.
Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{s}^{0}$, $p$, $\bar{p}$, $\phi$, $\Lambda$, $\bar{\Lambda}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $\sqrt{s_{NN}}$ (or increasing baryon chemical potential, $\mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV. However, for the group of particles NCQ scaling at $(m_{T}-m_{0})/n_{q}>$ 0.4 GeV/$c^{2}$ is not violated within $\pm$10%. The $v_{2}$ values for $\phi$ mesons at 7.7 and 11.5 GeV are approximately two standard deviations from the trend defined by the other hadrons at the highest measured $p_{T}$ values.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum, p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of Λ,Λbar as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow,v_2 of Λ,Λbar as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The proton and anti-proton elliptic flow for 0–80% central Au+Au collisions at √sNN= 19.6 GeV, where “(+,-) EP” refers to the event plane reconstructed using all of the charged particles and “(-) EP” refers to the event plane reconstructed using only the negatively charged particles.
Cross-section measurements for a $Z$ boson produced in association with high-transverse-momentum jets ($p_{\mathrm{T}} \geq 100$ GeV) and decaying into a charged-lepton pair ($e^+e^-,\mu^+\mu^-$) are presented. The measurements are performed using proton-proton collisions at $\sqrt{s}=13$ TeV corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the $Z$ boson and the closest jet are performed in events with at least one jet with $p_{\mathrm{T}} \geq 500$ GeV. Event topologies of particular interest are the collinear emission of a $Z$ boson in dijet events and a boosted $Z$ boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-next-to-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.
Measured fiducial differential cross sections for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $\Delta R_{Z,j}^{min}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the high-p$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $r_{Z,j}$ in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the collinear region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the back-to-back region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the H$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the $\Delta R_{Z,j}^{min}$ in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in the high-S$_{\mathrm{T}}$ region in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.