We present the first measurement of dijet angular distributions in ppbar collisions at sqrt{s}=1.96TeV at the Fermilab Tevatron Collider. The measurement is based on a dataset corresponding to an integrated luminosity of up to 0.7fb-1 collected with the D0 detector. Dijet angular distributions have been measured over a range of dijet masses, from 0.25TeV to above 1.1TeV. The data are in good agreement with the predictions of perturbative QCD and are used to constrain new physics models including quark compositeness, large extra dimensions, and TeV-1 scale extra dimensions. For all models we set the most stringent direct limits to date.
Normalized differential distribution in CHI(dijet) for two-jet mass 250 to 300 GeV and the non perturbative correction factor.
Normalized differential distribution in CHI(dijet) for two-jet mass 300 to 400 GeV and the non perturbative correction factor.
Normalized differential distribution in CHI(dijet) for two-jet mass 400 to 500 GeV and the non perturbative correction factor.
A study of the inclusive charged hadron production in two-photon collisions is described. The data were collected with the DELPHI detector at LEP II. Results on the inclusive single-particle p_T distribution and the differential charged hadrons dsigma/dp_T cross-section are presented and compared to the predictions of perturbative NLO QCD calculations and to published results.
Differential inclusive DSIG/DPT distribution of charged particles produced in GAMMA* GAMMA* interaction with two pseudorapidity cut offs.
We have measured the differential cross section for the inclusive production of psi(2S) mesons decaying to mu^{+} mu^{-1} that were produced in prompt or B-decay processes from ppbar collisions at 1.96 TeV. These measurements have been made using a data set from an integrated luminosity of 1.1 fb^{-1} collected by the CDF II detector at Fermilab. For events with transverse momentum p_{T} (psi(2S)) > 2 GeV/c and rapidity |y(psi(2S))| < 0.6 we measure the integrated inclusive cross section sigma(ppbar -> psi(2S)X) Br(psi(2S) -> mu^{+} mu^{-}) to be 3.29 +- 0.04(stat.) +- 0.32(syst.) nb.
The differential cross section times the dimuon branching fraction as a function of pT.
The integrated inclusive differential cross section for PSI(3685).
Photoproduction of $\Lambda$(1520) with liquid hydrogen and deuterium targets was examined at photon energies below 2.4 GeV in the SPring-8/LEPS experiment. For the first time, the differential cross sections were measured at low energies and with a deuterium target. A large asymmetry of the production cross sections from protons and neutrons was observed at backward K$^{+/0}$ angles. This suggests the importance of the contact term, which coexists with t-channel K exchange under gauge invariance. This interpretation was compatible with the differential cross sections, decay asymmetry, and photon beam asymmetry measured in the production from protons at forward K$^+$ angles.
The measured differential cross sections from the liquid hydrogen target, protons, as a function the K+ polar angle.
The measured differential cross sections from the liquid hydrogen target, protons, as a function the photon energy at forward K+ polar angles of 19-43 degrees .
The measured of differential cross section at backward K+/K0 polar angles of 120-150 degrees as a function of photon energy from the liquid hydrogen target, protons, and liquid deuterium target, deuterons.
The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2 < Q^2 < 100 GeV^2 and the inelasticity 0.1 < y < 0.6. The K_s and Lambda production cross sections and their ratios are determined. K_s production is compared to the production of charged particles in the same region of phase space. The Lambda - anti-Lambda asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data.
Visible cross section for the production of K0S and LAMBDA(BAR).
Ratio of strange baryon to meson production.
Ratio of K0S to charged hadron production.
The results from the first kinematically complete measurement of the dd --> 4Hepipi reaction are reported. The aim was to investigate a long standing puzzle regarding the origin of the peculiar pipi-invariant mass distributions appearing in double pion production in light ion collisions, the so-called ABC effect. The measurements were performed at the incident deuteron energies of 712 MeV and 1029 MeV, with the WASA detector assembly at CELSIUS in Uppsala, Sweden. We report the observation of a characteristic enhancement at low pipi-invariant mass at 712 MeV, the lowest energy yet. At the higher energy, in addition to confirming previous experimental observations, our results reveal a strong angular dependence of the pions in the overall centre of mass system. The results are qualitatively reproduced by a theoretical model, according to which the ABC effect is described as resulting from a kinematical enhancement in the production of the pion pairs from two parallel and independent NN--> dpi sub-processes.
Total cross section for neutral and charged pion channels.
Invariant PI0 PI0 mass distribution at deuteron kinetic energy 1.029 GeV.
Invariant PI+ PI- mass distribution at deuteron kinetic energy 1.029 GeV.
Measurements of the cross sections for charged current deep inelastic scattering in e-p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb-1 collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections dsigma/dQ2, dsigma/dx and dsigma/dy are presented for Q2>200 GeV2. The double-differential cross-section d2sigma/dxdQ2 is presented in the kinematic range 280<Q2<30000 GeV2 and 0.015<x<0.65. The measured cross sections are compared with the predictions of the Standard Model.
Total cross section for CC DIS events for two values of the longitudinal polarization of the electron beam.
Total cross section for CC DIS events as a function of the longitudinal polarization of the electron beam.
Differential cross section DSIG/DQ**2 for the two values of longitudinal polarization of the electron beam.
We present cross section measurements for Z/gamma*+jets+X production, differential in the transverse momenta of the three leading jets. The data sample was collected with the D0 detector at the Fermilab Tevatron proton anti-proton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of 1 fb-1. Leading and next-to-leading order perturbative QCD predictions are compared with the measurements, and agreement is found within the theoretical and experimental uncertainties. We also make comparisons with the predictions of four event generators. Two parton-shower-based generators show significant shape and normalization differences with respect to the data. In contrast, two generators combining tree-level matrix elements with a parton shower give a reasonable description of the the shapes observed in data, but the predicted normalizations show significant differences with respect to the data, reflecting large scale uncertainties. For specific choices of scales, the normalizations for either generator can be made to agree with the measurements.
PT distribution of the first jet in events with one or more jets with additional constraints on the electrons.
PT distribution of the first jet in events with one or more jets.
PT distribution of the second jet in events with two or more jets with additional constraints on the electrons.
Differential cross sections for the reaction $\gamma p \to n \pi^+$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.725 to 2.875 GeV. Where available, the results obtained here compare well with previously published results for the reaction. Agreement with the SAID and MAID analyses is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been made up to 2.7 GeV. Resonance couplings have been extracted and compared to previous determinations. With the addition of these cross sections to the world data set, significant changes have occurred in the high-energy behavior of the SAID cross-section predictions and amplitudes.
Differential cross sections for incident photon energies 0.725, 0.775, 0.825and 0.875 GeV.
Differential cross sections for incident photon energies 0.925, 0.975, 1.025and 1.075 GeV.
Differential cross sections for incident photon energies 1.125, 1.175, 1.225and 1.275 GeV.
We present a measurement of the $\ttbar$ differential cross section with respect to the $\ttbar$ invariant mass, dSigma/dMttbar, in $\ppbar$ collisions at $\sqrt{s}=1.96$ TeV using an integrated luminosity of $2.7\invfb$ collected by the CDF II experiment. The $\ttbar$ invariant mass spectrum is sensitive to a variety of exotic particles decaying into $\ttbar$ pairs. The result is consistent with the standard model expectation, as modeled by \texttt{PYTHIA} with \texttt{CTEQ5L} parton distribution functions.
The measured differential cross section. The first error is the statistical plus jet energy scale uncertainty and the DSYS is the systematic error excluding the uncertainty in the luminosity.
The integrated cross section with statistical plus jet energy scale errors.