Measurements of the meson photon transition form factors of light pseudoscalar mesons at large momentum transfer.

The CLEO collaboration Gronberg, J. ; Hill, T.S. ; Kutschke, Robert K. ; et al.
Phys.Rev.D 57 (1998) 33-54, 1998.
Inspire Record 446031 DOI 10.17182/hepdata.47203

Using the CLEO~II detector, we have measured the differential cross sections for exclusive two-photon production of light pseudoscalar mesons $\pi^0$, $\eta$, and $\eta^{\prime}$. From our measurements we have obtained the form factors associated with the electromagnetic transitions $\gamma^*\gamma$ $\to$ meson. We have measured these form factors in the momentum transfer ranges from 1.5 to 9, 20, and 30 GeV$^2$ for $\pi^0$, $\eta$, and $\eta^{\prime}$, respectively, and have made comparisons to various theoretical predictions.

10 data tables

The results of PI0 --> GAMMA GAMMA analysis assuming Br(PI0-->2GAMMA)=0.99.

The results of ETA --> GAMMA GAMMA analysis assuming Br(ETA-->2GAMMA)=0.39.

The results of ETA --> 3PI0 analysis assuming Br(ETA-->3PI0)*Br(PI0-->2GAM MA)**3 = 0.31.

More…

Lambda Antilambda production in two-photon interactions at CLEO.

The CLEO collaboration Anderson, S. ; Kubota, Y. ; Lattery, M. ; et al.
Phys.Rev.D 56 (1997) R2485-R2489, 1997.
Inspire Record 439745 DOI 10.17182/hepdata.47140

Using the CLEO detector at the Cornell $e~+e~-$ storage ring, CESR, we study the two-photon production of $\Lambda \overline{\Lambda}$, making the first observation of $\gamma \gamma \to \Lambda \overline{\Lambda}$. We present the cross-section for $ \gamma \gamma \to \Lambda \overline{\Lambda}$ as a function of the $\gamma \gamma$ center of mass energy and compare it to that predicted by the quark-diquark model.

3 data tables

No description provided.

No description provided.

No description provided.


Observation of D1+ (2420) and D2*+ (2460)

The CLEO collaboration Bergfeld, T. ; Eisenstein, Bob I. ; Gollin, G. ; et al.
Phys.Lett.B 340 (1994) 194-204, 1994.
Inspire Record 378319 DOI 10.17182/hepdata.47246

Using the CLEO II detector at CESR, we have observed two charmed states, where the higher mass state decays to D 0 π + and to D ∗0 π + , while the lower mass state decays to D ∗0 π + , but not to D 0 π + . The masses and widths were measured to be 2425±2±2 MeV/c 2 and 26 −7−4 +8+4 MeV/c 2 for the lower mass state, and 2463±3±3 MeV/c 2 and 27 −8−5 +11+5 MeV/c 2 for the higher mass state. Properties of these states, including their decay angular distributions and spin-parity assignments have been studied. The results of this analysis support the identification of these states as the charged L = 1 D 1 (2420) + and D 2 ∗ (2460) + , respectively. The isospin mass splittings between these states and their neutral partners have also been measured. This is the first full reconstruction of any decay mode of the D 1 (2420) + and the first observation of the decay of D 2 ∗ (2460) + to D ∗0 π + .

1 data table

CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(Z) = FD(Z) = const * (1/Z)*1/(1 - (1/Z)-CONST(NAME=EPS)/(1-Z))**2. Charged conjugate states are undestood.


Two-Photon Production of Charged Pion and Kaon Pairs

The CLEO collaboration Dominick, J. ; Lambrecht, M. ; Sanghera, S. ; et al.
Phys.Rev.D 50 (1994) 3027-3037, 1994.
Inspire Record 372230 DOI 10.17182/hepdata.47104

A measurement of the cross section for the combined two-photon production of charged pion and kaon pairs is performed using 1.2~$\rm fb^{-1}$ of data collected by the CLEO~II detector at the Cornell Electron Storage Ring. The cross section is measured at invariant masses of the two-photon system between 1.5 and 5.0 GeV/$c^2$, and at scattering angles more than $53^\circ$ away from the $\gamma\gamma$ collision axis in the $\gamma\gamma$ center-of-mass frame. The large background of leptonic events is suppressed by utilizing the CsI calorimeter in conjunction with the muon chamber system. The reported cross section is compared with leading order QCD models as well as previous experiments. In particular, although the functional dependence of the measured cross section disagrees with leading order QCD at small values of the two-photon invariant mass, the data show a transition to perturbative behavior at an invariant mass of approximately 2.5 GeV/$c^2$. hardcopies with figures can be obtained by writing to to: Pam Morehouse preprint secretary Newman Lab Cornell University Ithaca, NY 14853 or by sending mail to: preprints@lns62.lns.cornell.edu

1 data table

There is an additional 10 pct point-to-point systematic error as well as the overall uncertainty given above.