The central inclusive jet cross section has been measured using a successive-combination algorithm for reconstruction of jets. The measurement uses 87.3 pb^{-1} of data collected with the D0 detector at the Fermilab Tevatron ppbar Collider during 1994-1995. The cross section, reported as a function of transverse momentum (pT>60 GeV) in the central region of pseudorapidity (|\eta|<0.5), exhibits reasonable agreement with next-to-leading order QCD predictions, except at low pT where the agreement is marginal.
The inclusive jet cross section as a function of PT.
We report the first measurement of inclusive antiproton production at mid-rapidity in Au+Au collisions at 130 GeV by the STAR experiment at RHIC. The antiproton transverse mass distributions in the measured transverse momentum range of 0.25 < pT < 0.95 GeV/c are found to fall less steeply for more central collisions. The extrapolated antiproton rapidity density is found to scale approximately with the negative hadron multiplicity density.
Tranverse mass distributions for different centralities
Antiproton fit parameters and yields. Systematic errors are 10%.
Antiproton fit parameters and yields. Systematic errors are 10%.
The cross section of the process $e^+e^-\to \pi^+\pi^-\pi^0$ was measured in the Spherical Neutral Detector experiment at the VEPP-2M collider in the energy region $\sqrt[]{s} = 980 \div 1380$ MeV. The measured cross section, together with the $e^+e^-\to \pi^+\pi^-\pi^0$ and $\omega\pi^+\pi^-$ cross sections obtained in other experiments, was analyzed in the framework of the generalized vector meson dominance model. It was found that the experimental data can be described by a sum of $\omega$, $\phi$ mesons and two $\omega^\prime$ and $\omega^{\prime\prime}$ resonances contributions, with masses $m_{\omega^\prime}\sim 1490$,$m_{\omega^{\prime\prime}}\sim 1790$ MeV and widths $\Gamma_{\omega^\prime}\sim 1210$, $\Gamma_{\omega^{\prime\prime}}\sim 560$ MeV. The analysis of the $\pi^+\pi^-$ invariant mass spectra in the energy region $\sqrt[]{s}$ from 1100 to 1380 MeV has shown that for their descriptionone should take into account the $e^+e^-\to\omega\pi^0\to\pi^+\pi^-\pi^0$ mechanism also. The phase between the amplitudes corresponding to the $e^+e^-\to\omega\pi$ and $e^+e^-\to\rho\pi$ intermediate states was measured for the first time. The value of the phase is close to zero and depends on energy.
The measured E+ E- --> PI+ PI- PI0 cross section.
We present a measurement of the b-quark inclusive fragmentation function in Z0 decays using a novel kinematic B-hadron energy reconstruction technique. The measurement was performed using 350,000 hadronic Z0 events recorded in the SLD experiment at SLAC between 1997 and 1998. We compared the sacled B-hadron energy distribution with models of b-quark fragmentation and with several ad hoc functional forms. A number of models and functions are excluded by the data. The average scaled energy of weakly-decaying B hadrons was measured to be
DATA FROM THE ERRATUM (PR D66,079905,2002). Measurement of the fragmentation function of weakly decaying B-hadrons in Z0 decays. First systematic (DSYS) error is the systematic error, the second is the estimated error due to the model dependence of the unfolding procedure.
DATA FROM ORIGINAL PAPER, SUPERSEDED BY ERRATUM (SEE ABOVE TABLE). Measurement of the fragmentation function of weakly decaying B-hadrons in Z0 decays. First systematic (DSYS) error is the systematic error, the second is the estimated error due to the model dependence of the unfolding procedure.
We report the first measurement of strange ($\Lambda$) and anti-strange ($\bar{\Lambda}$) baryon production from $\sqrt{s_{_{NN}}}=130$ GeV Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Rapidity density and transverse mass distributions at mid-rapidity are presented as a function of centrality. The yield of $\Lambda$ and $\bar{\Lambda}$ hyperons is found to be approximately proportional to the number of negative hadrons. The production of $\bar{\Lambda}$ hyperons relative to negative hadrons increases very rapidly with transverse momentum. The magnitude of the increase cannot be described by existing hadronic string fragmentation models.
Transverse mass distributions of $\Lambda$ at mid-rapidity ($|y|<0.5$) for selected centrality bins. Only statistical errors are listed. Combined systematic errors estimated to be $10\%$. The dashed lines are Boltzmann fits. Note that multiplicative factors have been applied to data from the two most central data sets for display.
Transverse mass distributions of $\bar\Lambda$ at mid-rapidity ($|y|<0.5$) for selected centrality bins. Only statistical errors are listed. Combined systematic errors estimated to be $10\%$. The dashed lines are Boltzmann fits. Note that multiplicative factors have been applied to data from the two most central data sets for display.
The mid-rapidity $\bar\Lambda$ ($|y|<0.5$) transverse momentum distribution from the top $5\%$ most central collisions. For comparison the distributions for negative hadrons ($d^{2}N/(2 \pi p_{T})dp_{T}d\eta$, $|\eta|<0.1$) and anti-protons ($|y|<0.1$) for the similar centrality bin are included. Only statistical errors are listed. Statistical errors are less than the size of the data points. Combined systematic errors on hyperons estimated to be $10\%$. Correlated systematic errors for negative hadrons estimated to be $6\%$. Systematic errors on antiprotons are $8\%$ point-to-point and $10\%$ in the overall normalization.
We present the first measurement of midrapidity vector meson φ production in Au+Au collisions at RHIC (sNN=130 GeV) from the STAR detector. For the 11% highest multiplicity collisions, the slope parameter from an exponential fit to the transverse mass distribution is T=379±50(stat)±45(syst) MeV, the yield dN/dy=5.73±0.37(stat)±0.69(syst) per event, and the ratio Nφ/Nh− is found to be 0.021±0.001(stat)±0.004(syst). The measured ratio Nφ/Nh− and T for the φ meson at midrapidity do not change for the selected multiplicity bins.
Transverse mass distriution of $\phi$ for 0-11% centrality in Au+Au collisions at 130 GeV.
Transverse mass distriution of $\phi$ for 11-26% centrality in Au+Au collisions at 130 GeV.
Transverse mass distriution of $\phi$ for 26-85% centrality in Au+Au collisions at 130 GeV.
The e+e- -> pi0 pi0 gamma process was studied in the SND experiment at VEPP-2M e+e- collider in the energy region 0.60-0.97 GeV. From the analysis of the energy dependence of measured cross section the branching ratios B(omega -> pi0 pi0 gamma)= (6.6 +1.4-0.8(stat) +-0.6(syst))x10^-5 and B(rho -> pi0 pi0 gamma)=(4.1 +1.0-0.9(stat) +-0.3(syst))x10^-5 were obtained.
Measured values of the cross section.
We report the first observation of $K^{\star}(892)^{0}\to\pi K$ in relativistic heavy ion collisions. The transverse momentum spectrum of $(K^{\star0}+\bar{K}^{\star0})/2$ from central Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV is presented. The ratios of the $K^{\star0}$ yield derived from these data to the yields of negative hadrons, charged kaons, and $\phi$ mesons have been measured in central and minimum bias collisions and compared with model predictions and comparable $e^{+}e^{-}$, $pp$, and $\bar{p}p$ results. The data indicate no dramatic reduction of $K^{\star0}$ production in relativistic heavy ion collisions despite expected losses due to rescattering effects.
Transverse mass spectrum of K*0 with YRAP = -0.5 to 0.5 for the 14 PCT most central interactions. Numerical values requested from the authors.
K*0 to negative hadron ratio using hadron data from Adler et al PRL 87,112303(2001).
K*0 to kaon ratio using STAR kaon data.
We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, L and Lbar at midrapidity in Au+Au collisions at sNN = 130 GeV at RHIC. The value of v2 as a function of transverse momentum of the produced particles pt and collision centrality is presented for both particles up to pt 3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.
$v_2$ of $K_s^0$ as a function of $p_T$ for 0-11% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.
$v_2$ of $K_s^0$ as a function of $p_T$ for 11-45% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.
$v_2$ of $\Lambda+\bar{\Lambda}$ as a function of $p_T$ for 0-11% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.
Inclusive transverse momentum distributions of charged hadrons within 0.2
Inclusive $p_T$ distributions of ($h^+ + h^−)/2$. Non-central bins are scaled down by the indicated factors. The combined statistical and systematic errors are shown. Curves are fits to Eq. (2). Hash marks at the top indicate bin boundaries for $p_T>1.5$ GeV/c.
Ratio of charged hadron yields within $|\eta| < 0.5$ for central over peripheral collisions, normalized to $\langle Nbin\rangle$.
$R_{AA}$($p_T$) for various centrality bins, for Au+Au relative to an NN reference spectrum. Error bars are described in the text. Errors between different $p_T$ and centrality bins are highly correlated.