A Study of $K^0_S$, $\Lambda$ and $\bar{\Lambda}$ Production in 60-{GeV} and 200-{GeV} Per Nucleon O Au and $p$ Au Collisions With a Streamer Chamber Detector at the {CERN} {SPS}

The NA35 collaboration Bamberger, A. ; Bartke, J. ; Bialkowska, H. ; et al.
Z.Phys.C 43 (1989) 25, 1989.
Inspire Record 276686 DOI 10.17182/hepdata.15456

The production of neutral strange particlesKso, Λ and\(\bar \Lambda \) has been studied in 60 and 200 GeV per nucleon OAu and pAu collisions with the streamer chamber vertex spectrometer of the NA35 experiment at the CERN-SPS accelerator. Ratios of neutral strange particle production to negatively charged particle production in selected regions of phase space were measured to be the same in OAu and pAu reactions. The rates of strange particle production in central OAu collisions are about a factor of 16 higher than in pAu collisions when compared in the same regions of phase space. If an enhancement of strange particle production in OAu collisions relative to pAu collisions is considered to be a signature for quark-gluon plasma formation, no evidence supporting it is observed. The experimental results are compared to the Lund FRITIOF model.

22 data tables

No description provided.

No description provided.

No description provided.

More…

A study of strange particle production in nu/mu charged current interactions in the NOMAD experiment.

The NOMAD collaboration Astier, P. ; Autiero, D. ; Baldisseri, A. ; et al.
Nucl.Phys.B 621 (2002) 3-34, 2002.
Inspire Record 566751 DOI 10.17182/hepdata.48925

A study of strange particle production in muon neutrino charged current interactions has been performed using the data from the NOMAD experiment. Yields of neutral strange particles K0s, Lambda, AntiLambda have been measured. Mean multiplicities are reported as a function of the event kinematic variables Enu, W2 and Q2 as well as of the variables describing particle behaviour within a hadronic jet: xF, z and pT2. Decays of resonances and heavy hyperons with identified K0s and Lambda in the final state have been analyzed. Clear signals corresponding to K*+-, Sigma*+-, Xi- and Sigma0 have been observed.

20 data tables

Measured yields of the neutral strange particles measured in this analysis.The second line (marked *) is a recalculation taking into account contributions from both primary and secondary V0. The values for K0 are the K0S rates multipl ied by 2.

Measured yields as a function of E, the neutrino energy.

Measured yields as a function of W**2.

More…

CESIUM-IODINE DESIGNATED NUCLEUS.

CESIUM-IODINE DESIGNATED NUCLEUS.

CESIUM-IODINE DESIGNATED NUCLEUS.


CHARGED PARTICLE MULTIPLICITIES IN PI-, K- AND ANTI-P INTERACTIONS WITH NUCLEI AT 40-GEV/C

The RISK collaboration Boos, E.G. ; Mosienko, A.M. ; Pokrovsky, N.A. ; et al.
Z.Phys.C 26 (1984) 43-52, 1984.
Inspire Record 214970 DOI 10.17182/hepdata.22350

Interactions of 40 GeV/c πp-,K− and\(\bar p\) on Li, C, S, Cu, CsI and Pb were studied with the RISK-streamer chamber spectrometer. We present multiplicities of negatively charged particles, as well as of protons, and the correlations between them. The normalized mean multiplicity of negative particles,R−, depends on\(\bar v\), the average number of inelastic collisions as\(R^ -= (0.73 \pm 0.04) + (0.34 \pm 0.02)\bar v\). The dependence of the normalized dispersion of negative particles,D−/<N−>, on the number of protons favours independent collision models and contradicts the coherent tube picture. The excess of fast positive particles behaves asA0.4 and shows, for the heavier nuclei, a clear correlation with identified protons.

2 data tables

AVERAGE MULTIPLICITIES OF ALL CHARGED PARTICLES.

AVERAGE MULTIPLICITIES OF ALL NEGATIVELY CHARGED PARTICLES.


Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Nucl.Phys.A 832 (2010) 134-147, 2010.
Inspire Record 822997 DOI 10.17182/hepdata.101347

We present the multiplicity and pseudorapidity distributions of photons produced in Au+Au and Cu+Cu collisions at \sqrt{s_NN} = 62.4 and 200 GeV. The photons are measured in the region -3.7 < \eta < -2.3 using the photon multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of the collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for Au+Au and Cu+Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for \sqrt{s_NN} = 62.4 GeV and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of \eta - ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.

14 data tables

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 2. (Color online.) Event-by-event photon multiplicity distributions (solid circles) for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=62.4$ and $200 \mathrm{GeV} .$ The distributions for top $0-5 \%$ central $\mathrm{Au}+$ Au collisions and top $0-10 \%$ central $\mathrm{Cu}+\mathrm{Cu}$ collisions are also shown (open circles). The photon multiplicity distributions for central collisions are observed to be Gaussian (solid line). Only statistical errors are shown. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

More…

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Abbas, Ehab ; Abelev, Betty ; Adam, Jaroslav ; et al.
Phys.Lett.B 726 (2013) 610-622, 2013.
Inspire Record 1225979 DOI 10.17182/hepdata.68753

We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.

5 data tables

$\rm dN_{ch}/d\eta$ versus $\eta$ for different centralities. Errors are systematic as statistical errors are negligible.

Total number of produced charged particles extrapolated to beam rapidity as a function of the number of participating nucleons in the collision. Statistical errors are negligible. The first(sys) error is the correlated systematic error and the second is that which is uncorrelated to the other points.

$\rm dN_{ch}/d\eta$ per participant pair versus the number of participating nucleons in the collision for different eta ranges. Errors are systematic as statistical errors are negligible.

More…

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 772 (2017) 567-577, 2017.
Inspire Record 1507090 DOI 10.17182/hepdata.78365

We present the charged-particle pseudorapidity density in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02\,\mathrm{Te\kern-.25exV}$ in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from $-3.5$ to $5$, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find $21\,400\pm 1\,300$ while for the most peripheral (80-90%) we find $230\pm 38$. This corresponds to an increase of $(27\pm4)\%$ over the results at $\sqrt{s_{\mathrm{NN}}}=2.76\,\mathrm{Te\kern-.25exV}$ previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations --- none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies.

5 data tables

Charged-particle pseudorapidity density for ten centrality classes over a broad $\eta$ range in Pb-Pb collisions at $\sqrt{s_{_{\mathrm{NN}}}}=5.02\,\mathrm{TeV}$. Boxes around the points reflect the total uncorrelated systematic uncertainties, while the filled squares on the right reflect the correlated systematic uncertainty (evaluated at $\eta=0$). Statistical errors are generally insignificant and smaller than the markers. Also shown is the reflection of the $3.5<\eta<5$ values around $\eta=0$ (open circles). The line corresponds to fits of the difference between two Gaussians centred at $\eta=0$ ($f_{\text{GG}}$) [PLB754.373] to the data.

Charged-particle pseudorapidity density at midrapidity in most perihperhal (80-90%) Pb-Pb collisions at $\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5.02\,\mathrm{TeV}$.

Total number of charged particles as a function of the mean number of participating nucleons [PRC88.044909]. The total charged-particle multiplicity is given as the integral over $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ over the measured region ($-3.5<\eta<5$) and extrapolations from fitted functions in the unmeasured regions. The contribution from unmeasured $\eta$ regions amounts to $\approx30\%$ of the total number of charged particles. The uncertainty on the extrapolation to the unmeasured pseudorapidity region is smaller than the size of the markers. The contribution to the systematic uncertainties from the centrality determination and electromagnetic processes are vanishing compared to the contribution from the largest differences between the fitted functions. A function inspired by factorisation [PRC83.024913] is fitted to the data, and the best fit yields $a=51.5\pm7.3$, $b=0.16\pm0.05$.

More…

Centrality determination of Pb-Pb collisions at sqrt(sNN) = 2.76 TeV with ALICE

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 88 (2013) 044909, 2013.
Inspire Record 1215085 DOI 10.17182/hepdata.66916

This publication describes the methods used to measure the centrality of inelastic Pb-Pb collisions at a center-of-mass energy of 2.76 TeV per colliding nucleon pair with ALICE. The centrality is a key parameter in the study of the properties of QCD matter at extreme temperature and energy density, because it is directly related to the initial overlap region of the colliding nuclei. Geometrical properties of the collision, such as the number of participating nucleons and number of binary nucleon-nucleon collisions, are deduced from a Glauber model with a sharp impact parameter selection, and shown to be consistent with those extracted from the data. The centrality determination provides a tool to compare ALICE measurements with those of other experiments and with theoretical calculations.

6 data tables

$N_\mathrm{part}$ for Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV with the corresponding uncertainties derived from a Glauber calculation. The ${\langle N_\mathrm{part}^{\rm data} \rangle}$ are calculated from the NBD-Glauber fit to the VZERO amplitude, while the ${\langle N_\mathrm{part}^{\rm geo} \rangle}$ are obtained by slicing the impact parameter distribution. ${\langle N_\mathrm{part}^{\rm data} \rangle}$ is also calculated for two variations of the AP, i.e. moving it to 91 % (${\langle N_\mathrm{part}^{\rm data +} \rangle}$) and to 89 % (${\langle N_\mathrm{part}^{\rm data +} \rangle}$) respectively. The last three columns report the discrepancies between ${\langle N_\mathrm{part}^{\rm geo} \rangle}$ and ${\langle N_\mathrm{part}^{\rm data} \rangle}$ and ${\langle N_\mathrm{part}^{\rm data} \rangle}$ with the uncertainty of the AP.

Same as Table A.1 for $N_\mathrm{coll}$.

Same as Table A.1 for $T_\mathrm{AA}$.

More…

Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 754 (2016) 373-385, 2015.
Inspire Record 1394676 DOI 10.17182/hepdata.70834

The centrality dependence of the charged-particle pseudorapidity density measured with ALICE in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ over a broad pseudorapidity range is presented. This Letter extends the previous results reported by ALICE to more peripheral collisions. No strong change of the charged-particle pseudorapidity density distributions with centrality is observed, and when normalised to the number of participating nucleons in the collisions, the evolution over pseudorapidity with centrality is likewise small. The broad pseudorapidity range allows precise estimates of the total number of produced charged particles which we find to range from $162\pm22$ (syst.) to $17170\pm770$ (syst.) in 80-90% and 0-5 central collisions, respectively. The total charged-particle multiplicity is seen to approximately scale with the number of participating nucleons in the collision. This suggests that hard contributions to the charged-particle multiplicity are limited. The results are compared to models which describe $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ at mid-rapidity in the most central Pb-Pb collisions and it is found that these models do not capture all features of the distributions.

4 data tables

Measurement of $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ for all centralities and a broad $\eta$ range. Combined and symmetrised $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ over 30-90 PCT centrality from both SPD and FMD. Previously published results for 0-30 PCT over the full pseudorapidity range available elsewhere [PLB726.610]. Please note the systematic uncertainty from the centrality determination is encoded as a qualifier in the table header.

Full--width half--maximum of the charged--particle pseudorapidity distributions versus the average number of participants. The uncertainties on the ALICE measurements are from the fit of $f_{\text{GG}}$ only and evaluated at $95\%$ confidence level.

The charged--particle pseudorapidity density distributions scaled by the average number of participants in various pseudorapidity intervals as a function of the number of participants. Data for the 0 to 30 PCT most central events, and in ETARAP < 0.5 is available in previously published results [PLB726.610,PRC88.044910]. The uncertainties on $\left\langle N_{\text{part}}\right\rangle$ from the Glauber calculations not included (see [PRC88.044910]).

More…

Charged Particle Multiplicities and Interaction Cross-sections in High-energy Nuclear Collisions

The NA35 collaboration Bamberger, A. ; Bangert, D. ; Bartke, J. ; et al.
Phys.Lett.B 205 (1988) 583-589, 1988.
Inspire Record 262284 DOI 10.17182/hepdata.42035

Inelastic cross sections at 60 and 200 GeV/nucleon are determined in a streamer chamber for 16 O on several nuclear targets. Charged particle multiplicity distributions for inelastic and central collisions are studied and compared with theoretical predictions. The inelastic cross section exhibit a geometrical dependence on nuclear radii. The multiplicity data are governed by the collision geometry. They are consistent with a picture of superposition of independent nucleon-nucleus interactions.

2 data tables

Minimum bias events.

Hard veto and hard Et events.