Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-Hadron Correlations in p+p Collisions at sqrt(s)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 103 (2009) 082002, 2009.
Inspire Record 816469 DOI 10.17182/hepdata.57326

The momentum distribution of electrons from semi-leptonic decays of charm and bottom for mid-rapidity |y|<0.35 in p+p collisions at sqrt(s)=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 2 < p_T < 7 GeV/c. The ratio of the yield of electrons from bottom to that from charm is presented. The ratio is determined using partial D/D^bar --> e^{+/-} K^{-/+} X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in p_T. A fixed-order-plus-next-to-leading-log (FONLL) perturbative quantum chromodynamics (pQCD) calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is \sigma_{b\b^bar}= 3.2 ^{+1.2}_{-1.1}(stat) ^{+1.4}_{-1.3}(syst) micro b.

6 data tables match query

Bottom contribution to the electrons from heavy flavor decay as a function of PT. These values has been obtained using g3data software which to extract the data from the plot and should therefore be used with caution. The g3data program indicates an extra uncertainty of 0.01 on these values.

Differential bottom production cross section at mid rapidity (y=0) To obtain this value, the differential "bottom-decay" electrons cross-section has been extrapolated to PT=0 using the spectrum shape predicted by pQCD. The b->e branching ratio used was 10 +-1%.

Invariant cross section of electrons from heavy flavor decay versus PT These values has been obtained using g3data software which to extract the data from the plot and should therefore be used with caution. The values in the last column indicate the level of uncertainty intoduced by g3data.

More…

Study of the Reaction $\bar{p} p \to \bar{\Lambda} \Lambda$ Near Threshold

Barnes, P.D. ; Besold, R. ; Birien, P. ; et al.
Phys.Lett.B 189 (1987) 249-253, 1987.
Inspire Record 244883 DOI 10.17182/hepdata.30178

Results are presented from a study of the reaction p p→ Λ Λ near threshold. Over 3000 events recorded at s values 14.6 and 25.5 MeV above the Λ Λ threshold (2231.2 MeV) have been analysed. Results for the production cross section, differential cross section, and the Λ and Λ polarization are given at both energies and are compared with recent theoretical calculations of this process.

3 data tables match query

Statistical errors only.

No description provided.

No description provided.


Threshold Measurement of the Reaction $\bar{p} p \to \bar{\ell}$ambda $\lambda$ at {LEAR}

Barnes, P.D. ; Besold, R. ; Birien, P. ; et al.
Phys.Lett.B 229 (1989) 432-438, 1989.
Inspire Record 280159 DOI 10.17182/hepdata.29780

The excitation function of the reaction p p→ Λ Λ in the threshold region has been measured at LEAR. Sixteen measurements of the total cross section, in the energy range between 0.85 MeV below threshold and 4.05 MeV above, are presented. The shapes of the measured differential cross sections indicate a remarkably strong p-wave contribution even down to the reaction threshold. We also report here the measurement of significant polarizations in the threshold region; these are compared with previous higher-energy data.

3 data tables match query

Data to be supplied by authors.

No description provided.

No description provided.


Measurement of the Reaction $\bar{p} p \to \bar{\ell}$ambda Sigma0 + $c$.$c$. At 1.695-{GeV}/$c$

Barnes, P.D. ; Birien, P. ; Bonner, B.E. ; et al.
Phys.Lett.B 246 (1990) 273-277, 1990.
Inspire Record 295561 DOI 10.17182/hepdata.29675

The reaction p p → Λ Σ 0 together with its charge conjugate channel (c.c.) has been measured at LEAR. The incident p momentum was 1.695 GeV/ c , corresponding to an excess energy above threshold of 14.8 MeV. Results are given for the production cross section and the differential cross section as well as for the polarization. Comparisons are made with theoretical calculations and with the reaction p p → Λ Λ .

3 data tables match query

No description provided.

No description provided.

Normalized Legendre polynomials of fits to data. Lambdabar Lambda data from Barnes et al., PL 189B (87) 249.


Measurement of the reactions anti-p p ---> Antisigma+ Sigma+ and anti-p p ---> Antisigma- Sigma- close to threshold

The PS185 collaboration Barnes, P.D ; Breunlich, W ; Dennert, H ; et al.
Phys.Lett.B 402 (1997) 227-236, 1997.
Inspire Record 457944 DOI 10.17182/hepdata.28302

The reactions p p → ∑ + ∑ + and p p → ∑ − ∑ − have been investigated at GeV/c beam momentum by the PS185 Collaboration at LEAR, CERN. Of both reaction types together 170 events could be identified. The cross section of the reaction p p → ∑ + ∑ + was determined to be σ tot = 3.68 ± 0.43 μ b at an excess energy of 23 MeV. Its angular distribution exhibits a pronounced forward peaking. The ratio of the cross sections σ( p p → ∑ + ∑ + ) σ( p p → ∑ − ∑ − ) = 2.4 −1.3 +3.0 was extracted with a confidence limit of 90%. It is the first time that experimental data of these reaction channels are available close to the threshold. We compare our results with those of earlier experiments and with theoretical predictions.

1 data table match query

No description provided.


Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Lett.B 670 (2009) 313-320, 2009.
Inspire Record 778611 DOI 10.17182/hepdata.73669

The PHENIX experiement has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions from light meson decays to e^+e^- pairs have been determined based on measurements of hadron production cross sections by PHENIX. They account for nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which is consistent with QCD calculations and measurements of single leptons by PHENIX.

2 data tables match query

Differential charm cross section at mid rapidity An additional +-39.5 microbarn error, due to the validity of the model used to extrapolate the data, is not included The contribution from beauty estimated to be 3.7 microbarn, has been subtracted. The c->e branching ratio used was 9.5 +-1.0%.

Total charm cross section An additional systemactic error of +- 200 microbarn, due to the validity of the model used to extrapolate the data, is not included. To obtain the total charm cross section, the differential charm cross section has been extrapolated to the whole rapidity range, using a HVQMNR rapidity distribution with aCTEQ5M PDF.


Measurement of high-p(T) single electrons from heavy-flavor decays in p + p collisions at s**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 97 (2006) 252002, 2006.
Inspire Record 725484 DOI 10.17182/hepdata.57283

The momentum distribution of electrons from decays of heavy flavor (charm and beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent methods have been used to determine the heavy flavor yields, and the results are in good agreement with each other. A fixed-order-plus-next-to-leading-log pQCD calculation agrees with the data within the theoretical and experimental uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/- 224^sys micro barns.

3 data tables match query

Heavy-flavor decay electrons invariant differential cross-section An additional 10% normalization uncertainty is to add.

Differential charm cross section To obtain this value, the differential "charm-decay" electrons cross-section, integrated over PT>0.4 GeV/c, has been extrapolated down to PT=0 using the spectrum shape predicted by a fixed-order-plus-next-to-leading-log (FONLL)calculation. The contribution from beauty and beauty cascades, estimated to be 0.1 microbarn, has been substracted, and the c->e branching ratio used was 9.5 +- 1.0%.

Total charm cross section To obtain the total charm cross section, the differential charm cross section has been extrapolated to the whole rapidity range, using a HVQMNR rapidity distribution with aCTEQ5M PDF.


Measurement of the reaction anti-p p ---> K(s) K(s) in the region near s**(1/2) approximately = 2230-MeV

Barnes, P.D. ; Birien, P. ; Breunlich, W.H. ; et al.
Phys.Lett.B 309 (1993) 469-476, 1993.
Inspire Record 354910 DOI 10.17182/hepdata.28909

Measurements of the total and differential cross sections of the reaction p p → K s K s are presented for values of s in the region near 2230 MeV. The 18 energies of the scan were chosen to permit a sensitive search for resonant structure related to the ¢E(2230) state in a channel with a minimal non-resonant background. No such structure is observed. Stringent limits for the branching ratio are set based on various assumptions for the width and spin of the ¢E.

4 data tables match query

No description provided.

Legendre polynomial fit to dsig/domega to order 0.

Legendre polynomial fit to dsig/domega to order 2.

More…

Study of the reaction anti-p p ---> Anti-lambda Lambda below 6-MeV excess energy

Barnes, P.D. ; Birien, P. ; Breunlich, W.H. ; et al.
Phys.Lett.B 331 (1994) 203-210, 1994.
Inspire Record 382628 DOI 10.17182/hepdata.28665

The reaction p p → Λ Λ → p π + pπ − is studied in the experiment PS185 at the CERN Low Energy Antiproton Ring (LEAR). A precise measurement of the excitation function in the immediate threshold region below 6 MeV excess energy was achieved. The total cross section shows an unexpected behaviour around 1 MeV excess energy.

1 data table match query

The values are calculated using M(p)=M(pbar) = 938.27231 Mev and M(lambda)=M(lambdabar) = 1115.63 MeV.


J / psi production versus transverse momentum and rapidity in p+p collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 232002, 2007.
Inspire Record 731611 DOI 10.17182/hepdata.57311

J/Psi production in p+p collisions at sqrt(s) = 200 GeV has been Measured in the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over a rapidity range of -2.2 < y < 2.2 and a transverse momentum range of 0 < pT < 9 GeV/c. The statistics available allow a detailed measurement of both the pT and rapidity distributions and are sufficient to constrain production models. The total cross section times branching ratio determined for J/Psi production is B_{ll} sigma_pp^J/psi = 178 +/- 3(stat) +/- 53(syst) +/- 18(norm) nb.

4 data tables match query

J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at forward rapidities : absolute value of y belongs to [1.2;2.2].

Mean PT^2 value at mid rapidities : -0.35<y<0.35 The mean PT is obtained with a phenomonological fit of the J/PSI distribution in PT of the form (1/(2*PI*PT))*D(SIG)/DPT = A ( 1+(PT/B)^2)^-6 .The systematic error includes the incertainty from the maximum shape deviation permitted by the point-to-point correlated errors and from allowing the exponent of the fit fonctionto be a free parameter.

Mean PT^2 value at forward rapidities : absolute value of y belongs to [1.2;2.2] The mean PT is obtained with a phenomonological fit of the J/PSI distribution in PT of the form (1/(2*PI*PT))*D(SIG)/DPT = A ( 1+(PT/B)^2)^-6 .The systematic error includes the incertainty from the maximum shape deviation permitted by the point-to-point correlated errors and from allowing the exponent of the fit fonctionto be a free parameter.

More…