None
No description provided.
Upper limits are presented for the differential cross section in the reactions π−p→K+Σ− and π−p→K+Y*−(1385) with small momentum transfer from π− to K+.
EXTRAPOLATED TO T=0 ASSUMING SLOPE IS 5 GEV**-2.
ISOTROPIC ANGULAR DISTRIBUTION ASSUMED IN GIVEN T-RANGE.
Measurements of the differential cross section for the reactions π+p→K+Σ+ and π+p→K+Y*+(1385) are reported at 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 6.0, 10.0, and 14.0 GeV/c. Polarization in π+p→K+Σ+ is also reported at 6.0, 10.0, and 14.0 GeV/c. At small |t|, the cross section for π+p→K+Σ+ is well described by an exponential Aebt with slopes in the range b≈8−10 (GeV/c)−2; for |t|>0.5 (GeV/c)2 this slope decreases considerably. The cross section for π+p→K+Y*+(1385) is well described for |t|>0.2 (GeV/c)2 by a single exponential of slope about half that for π+p→K+Σ+; there is no break near |t|>0.5 (GeV/c)2. We observe a dip in this cross section near t=0. The polarization in π+p→K+Σ+ is consistent with zero for |t|<0.4 (GeV/c)2 and becomes large and positive for larger |t|.
No description provided.
No description provided.
No description provided.
We present differential cross-section data for the reaction π+p→π+p near 180° in the center-of-mass system at beam momenta between 3.25 GeVc and 10 GeVc.
No description provided.
No description provided.
We have measured the reaction cross section for p¯p→n¯n in small momentum steps between 0.97 and 3.13 Gev/c to a high level of statistical accuracy. Structures are observed in the vicinity of Plab=1.25 GeVc and 1.8 GeVc which are consistent with the structure observed in the p¯p total cross section.
No description provided.
In exposures of the Argonne National Laboratory 12-ft bubble chamber filled with hydrogen and deuterium to a neutrino beam, we have observed events consisting of (1) a single π+ meson originating in the liquid, and (2) a proton with an e+e− pair pointing to it. Only a small fraction of these events can be ascribed to known reactions such as np→nnπ+ and np→npπ0. The remaining events, which correspond to a signal of about 4.5 standard deviations, we ascribe to the reactions νp→νnπ+ and νpπ0.
No description provided.
Targets made of C, Al, Cu, Pb, and U were exposed to π+, π−, and proton beams of 9.92 and 19.85 GeV/c (for p-Pb only) at the Brookhaven AGS. A magnetic spectrometer with spark chambers was used to detect elastically scattered particles in the Coulomb-nuclear interference region (5-35 mrad). Differential cross sections are presented and compared with an optical model, taking full account of multiple scattering in the target.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
We studied K+p interactions at 100 GeV with the Fermi National Accelerator Laboratory 30-in. hydrogen bubble chamber and associated spark-chamber system. We find σtot(K+p)=18.7±1.8 mb and σel(K+p)=2.0±0.4 mb. We present the charged-multiplicity distribution and its moments, and the charge-transfer distribution. The average inelastic charged multiplicity is 〈nc〉=6.65±0.31 and the two-charged-particle correlation functions are f2cc=4.52±1.32 and f2−−=0.47±0.35.
No description provided.
No description provided.
No description provided.
Proton-deuteron elastic scattering has been measured in the four-momentum transfer squared region 0.013<|t|<0.14 (GeV/c)2 and for incident proton beam momenta from 50 to 400 GeV/c. The data can be fitted with the Bethe interference formula. We observe shrinkage of the diffraction cone with increasing energy equal to (0.94±0.04)ln(s1 GeV2) (GeV/c)−2. This shrinkage is greater than that observed in pp elastic scattering. The ratio of the elastic to the total cross section is approximately 0.1 and independent of energy above ∼ 150 GeV. In order to extract information on pn scattering we fit our data using the Glauber approach and a form factor which is the sum of exponentials. The values we obtain for the slope parameter in pn scattering are sensitive to the details of the inelastic double-scattering term.
.
.
.
We report the 24-GeV/c inclusive π− yield near θc.m.=90° for 0.5<~PT≲2.2 GeV/c. No high-PT excess is seen at this energy. In addition we have obtained the inclusive γ-ray yield from a measurement of low-mass e+e− pairs. This yield is compared with that expected from π0-, η-, and ω-meson decay, to provide limits on possible direct photon production.
No description provided.