Charged-particle distributions are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 $\mu$b$^{-1}$, recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators.
The average charged-particle multiplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.
The extrapolated average charged-particle multiplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.
Charged-particle multiplicities in proton-proton collisions at a centre-of-mass energy of 13000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
The momentum-weighted sum of the charges of tracks associated to a jet is sensitive to the charge of the initiating quark or gluon. This paper presents a measurement of the distribution of momentum-weighted sums, called jet charge, in dijet events using 20.3 fb$^{-1}$ of data recorded with the ATLAS detector at $\sqrt{s}=8$ TeV in $pp$ collisions at the LHC. The jet charge distribution is unfolded to remove distortions from detector effects and the resulting particle-level distribution is compared with several models. The $p_T$-dependence of the jet charge distribution average and standard deviation are compared to predictions obtained with several LO and NLO parton distribution functions. The data are also compared to different Monte Carlo simulations of QCD dijet production using various settings of the free parameters within these models. The chosen value of the strong coupling constant used to calculate gluon radiation is found to have a significant impact on the predicted jet charge. There is evidence for a $p_{T}$-dependence of the jet charge distribution for a given jet flavor. In agreement with perturbative QCD predictions, the data show that the average jet charge of quark-initiated jets decreases in magnitude as the energy of the jet increases.
The jet charge mean for kappa = 0.3 and the more forward jet. Values are given in units of the positron charge, e.
The jet charge distribution standard deviation for kappa = 0.3 and the more forward jet. Values are given in units of the positron charge, e.
The jet charge mean for kappa = 0.3 and the more central jet. Values are given in units of the positron charge, e.
A measurement of the underlying event (UE) activity in proton-proton collisions is performed using events with charged-particle jets produced in the central pseudorapidity region (abs(eta[jet]) < 2) and with transverse momentum 1<= pt[jet] < 100 GeV. The analysis uses a data sample collected at a centre-of-mass energy of 2.76 TeV with the CMS experiment at the LHC. The UE activity is measured as a function of pt[jet] in terms of the average multiplicity and scalar sum of transverse momenta (pt) of charged particles, with abs(eta) < 2 and pt > 0.5 GeV, in the azimuthal region transverse to the highest pt jet direction. By further dividing the transverse region into two regions of smaller and larger activity, various components of the UE activity are separated. The measurements are compared to previous results at 0.9 and 7 TeV, and to predictions of several Monte Carlo event generators, providing constraints on the modelling of the UE dynamics.
Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 2.76 TeV in the Transverse region.
Fully corrected average charged particle scalar Sum(pT) per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 2.76 TeV in the Transverse region.
Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 2.76 TeV in the TransMAX region.
Dihadron correlations are analyzed in $\sqrt{s_{_{\rm NN}}} = 200$ GeV $d$+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.
The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the near (|$\Delta\phi$| < $\pi$/3). Shown is the low FTPC-Au activity data. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.
The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the away side (|$\Delta\phi$ - $\pi$| < $\pi$/3. Shown is the high FTPC-Au activity data. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.
The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the near (|$\Delta\phi$| < $\pi$/3) side. Shown is the high-activity data after subtracting the unscaled. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.
We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $\sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.
Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 8.4 < $p_T$ < 9.9 GeV/c.
Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 26.8 < $p_T$ < 31.6 GeV/c.
Inclusive jet $A_{LL}$ vs. parton jet $p_T$ for |eta|<0.5.
Multiplicities of charged hadrons produced in deep inelastic muon scattering off a $^6$LiD target have been measured as a function of the DIS variables $x_{Bj}$, $Q^2$, $W^2$ and the final state hadron variables $p_T$ and $z$. The $p_T^2$ distributions are fitted with a single exponential function at low values of $p_T^2$ to determine the dependence of $\langle p_T^2 \rangle$ on $x_{Bj}$, $Q^2$, $W^2$ and $z$. The $z$-dependence of $\langle p_T^2 \rangle$ is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, $\langle k_{\perp}^2 \rangle$, as a function of $x_{Bj}$ and $Q^2$ in a leading order QCD parton model.
PT dependences of the differential multiplicities for 0.0045 < x_Bjorken < 0.0060 and 1.00 < Q^2 < 1.25 GeV^2 for Positive hadrons.
PT dependences of the differential multiplicities for 0.0060 < x_Bjorken < 0.0080 and 1.00 < Q^2 < 1.30 GeV^2 for Positive hadrons.
PT dependences of the differential multiplicities for 0.0060 < x_Bjorken < 0.0080 and 1.30 < Q^2 < 1.70 GeV^2 for Positive hadrons.
We report $J/\psi$ spectra for transverse momenta $p_T$> 5 GeV/$c$ at mid-rapidity in p+p and Au+Au collisions at sqrt(s_{NN}) = 200 GeV.The inclusive $J/\psi$ spectrum and the extracted $B$-hadron feed-down are compared to models incorporating different production mechanisms. We observe significant suppression of the $J/\psi$ yields for $p_T$> 5 GeV/$c$ in 0-30% Au+Au collisions relative to the p+p yield scaled by the number of binary nucleon-nucleon collisions in Au+Au collisions. In 30-60% collisions, no such suppression is observed.The level of suppression is consistently less than that of high-$p_T$ $\pi^{\pm}$ and low-$p_T$ $J/\psi$.
(Color online.) The invariant $J/\psi$ cross section versus $p_{T}$ in p+p collisions at $\sqrt{s}$ = 200 GeV. The vertical bars and boxes depict the statistical and systematic uncertainties, respectively. Also shown are results published by STAR [15] and PHENIX [20]. The curves show theoretical calculations described in the text.
(Color online.) The fraction of $B \rightarrow J/\psi$ over the inclusive $J/\psi$ yield in $p+p$ collisions. The FONLL+CEM model calculation is also shown.
$J/\psi$ $p_{T}$ distributions in Au+Au collisions with different centralities at $\sqrt{s_{NN}}$ = 200 GeV. For clarity, the data and curves have been scaled as indicated in the legends. The PHENIX results are reported in [6]. The curves are model fits described in the text.
A measurement of the underlying event (UE) activity in proton-proton collisions at a center-of-mass energy of 7 TeV is performed using Drell--Yan events in a data sample corresponding to an integrated luminosity of 2.2 inverse femtobarns, collected by the CMS experiment at the LHC. The activity measured in the muonic final state (q q-bar to opposite-sign muons) is corrected to the particle level and compared with the predictions of various Monte Carlo generators and hadronization models. The dependence of the UE activity on the dimuon invariant mass is well described by PYTHIA and HERWIG++ tunes derived from the leading jet/track approach, illustrating the universality of the UE activity. The UE activity is observed to be independent of the dimuon invariant mass in the region above 40 GeV, while a slow increase is observed with increasing transverse momentum of the dimuon system. The dependence of the UE activity on the transverse momentum of the dimuon system is accurately described by MADGRAPH, which simulates multiple hard emissions.
Toward $N_\text{chg}$ density vs $p_\perp^{\mu\mu}$.
Transverse $N_\text{chg}$ density vs $p_\perp^{\mu\mu}$.
Away $N_\text{chg}$ density vs $p_\perp^{\mu\mu}$.
We report measurements of the charge-separated $W^{+(-)} \to e^{+(-)} + \nu_e(\bar{\nu}_e)$ and $Z/\gamma^* \to e^+e^-$ production cross sections at mid-rapidity in proton-proton collisions at $\sqrt{s}$ = 500 GeV. These results are based on 13.2 pb$^{-1}$ of data recorded in 2009 by the STAR detector at RHIC. Production cross sections for W bosons that decay via the $e \nu$ channel were measured to be $\sigma(pp \to W^+ X) \cdot BR(W^+ \to e^+ \nu_e)$ = 117.3 \pm 5.9(stat) \pm 6.2(syst) \pm 15.2(lumi) pb, and $\sigma(pp \to W^- X) \cdot BR(W^- \to e^- \bar{\nu}_e)$ = 43.3 \pm 4.6(stat) \pm 3.4(syst) \pm 5.6(lumi) pb. For $Z/\gamma^*$ production, $\sigma(pp \to Z/\gamma^* X) \cdot BR(Z/\gamma^* \to e^+ e^-)$ = 7.7 \pm 2.1(stat) $^{+0.5}_{-0.9}$(syst) \pm 1.0(lumi) pb for di-lepton invariant masses $m_{e^+e^-}$ between 70 and 110 GeV/$c^2$. First measurements of the W cross section ratio, $\sigma(pp \to W^+ X) / \sigma(pp \to W^- X)$, at $\sqrt{s}$ = 500 GeV are also reported. Theoretical predictions, calculated using recent parton distribution functions, are found to agree with the measured cross sections.
(Color online) Trigger rate as a function of vernier scan beam displacement in the x and y directions. The transverse beam widths ($\sigma_{x}$ and $\sigma_{y}$) and maximum trigger rate ($R^{max}_{ver}$) were extracted from the fit, which is superimposed.
(Color online) Trigger rate as a function of vernier scan beam displacement in the x and y directions. The transverse beam widths ($\sigma_{x}$ and $\sigma_{y}$) and maximum trigger rate ($R^{max}_{ver}$) were extracted from the fit, which is superimposed.
(Color online) Distributions of $E^{e}_{T}$ for W candidate events after sequentially applying the selection criteria de- scribed in Secs. IV A and IV B.
A measurement of the underlying activity in scattering processes with a hard scale in the several GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 and 7 TeV, using data collected by the CMS experiment at the LHC. The production of charged particles with pseudorapidity |eta| < 2 and transverse momentum pT > 0.5 GeV/c is studied in the azimuthal region transverse to that of the leading set of charged particles forming a track-jet. A significant growth of the average multiplicity and scalar-pT sum of the particles in the transverse region is observed with increasing pT of the leading track-jet, followed by a much slower rise above a few GeV/c. For track-jet pT larger than a few GeV/c, the activity in the transverse region is approximately doubled with a centre-of-mass energy increase from 0.9 to 7 TeV. Predictions of several QCD-inspired models as implemented in PYTHIA are compared to the data.
Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 0.9 TeV.
Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 7 TeV.
Ratio of the fully corrected charged particle multiplicity at 7 TeV to that at 0.9 TeV.