We present data on the reaction ν p → μ + pπ − from an exposure of the Fermilab 15 ft hydrogen bubble chamber. The channel cross section for 5 GeV < E ν < 70 GeV and M( p π − ) < 1.9 GeV is σ = (27 ± 5) × 10 −40 cm 2 . This cross section is dominated by the I = 1 2 production amplitude.
The energy dependence of the modulus and phase of the K L 0 -K S 0 regeneration amplitude on hydrogen in the range of 14–50 GeV has been investigated at the Serpukhov 70 GeV accelerator. It has been established that the modulus of the modified regeneration amplitude decreases with increasing momentum as 2|ƒ 21 0 (p)|/k = (0.84 ± 0.42) · p −0.50±0.15 mb . The amplitude phase is energy-independent and its mean value is ϕ 21 0 = −132° ± 5°. The results obtained are compared with other experiments and with predictions of different theoretical models.
Results are presented of a study of inclusive ηp and ηn interactions from threshold to 6 GeV. The data show a rapid approach to the distributions expected in the naive quark-parton model. The charged-current η deuteron total cross section is fit by the expression σ T ( η d) = (0.76 ± 0.03) × 10 −38 E η cm 2 per GeV per nucleon. For E η > 1.5 GeV, we measure σ T ( η n)/ σ T ( η p) = (2.02 ± 0.23). The distributions in the scaling variables x and y are given and discussed.
This paper gives a detailed description of an experiment which studies the interactions of muon-type neutrinos in hydrogen and deuterium. The experiment was performed at the Zero Gradient Synchrotron using the wide-band neutrino beam incident on the Argonne 12-foot bubble chamber filled with hydrogen and deuterium. The neutrino energy spectrum peaks at 0.5 GeV and has a tail extending to 6 GeV. The shape and intensity of the flux is determined using measurements of pion yields from beryllium. The produced pions are focused by one or (for the latter part of the experiment) two magnetic horns. A total of 364000 pictures were taken with a hydrogen filling of the bubble chamber and 903 000 with a deuterium filling. The scanning and other analyses of the events are described. The most abundant reaction occurs off neutrons and is quasi-elastic scattering νd→μ−pps. The separation of these events from background channels is discussed. The total and differential cross sections are analyzed to obtain the axial-vector form factor of the nucleon. Our result, expressed in terms of a dipole form factor, gives an axial-vector mass of 0.95±0.09 GeV. A comparison is made to previous measurements using neutrino beams, and also to determinations based upon threshold pion electroproduction experiments. In addition, the data are used to measure the weak vector form factor and so check the conserved-vector-current hypothesis.
This paper gives the results of a study of inelastic charged-current interactions of muon-type neutrinos with hydrogen and deuterium targets using the Argonne 12-foot bubble chamber. We discuss in detail the separation of the events from background. For the single-pion production reactions νp→μ−pπ+, νn→μ−nπ+, and νn→μ−pπ0, energy-dependent cross sections, differential cross sections, invariant-mass distributions, and the Δ++(1236) decay angular distribution are presented. These data are also used to study the isospin properties of the πN system. Comparisons of the data with models of single-pion production are made, and a direct test of partial conservation of the axial-vector current is discussed. Cross sections and invariant-mass distributions are given for the reactions in which more than one pion is produced. Ten events of strange-particle production were found, and the properties of these events are discussed. The energy dependence of the total νp and νn cross sections from threshold to 6 GeV was determined, and the σ(νn)σ(νp) ratio measured. This ratio and the inclusive x and y distributions rapidly approach the scaling distributions expected from the quark-parton model.
The elastic and topological p¯p cross sections have been measured at 48.9 GeV/c in the Fermilab proportional-wire-chamber-30-in.-bubble-chamber hybrid spectrometer. The elastic cross section is 7.81±0.24 mb and the slope of the elastic differential cross section at t=0 is 13.4±0.8 GeV−2. Further, the moments of the inelastic topological-cross-section distribution are 〈nc〉=5.69±0.03, 〈nc〉D=2.10±0.02, and f2cc=1.67±0.12.
We studied K+p interactions at 100 GeV with the Fermi National Accelerator Laboratory 30-in. hydrogen bubble chamber and associated spark-chamber system. We find σtot(K+p)=18.7±1.8 mb and σel(K+p)=2.0±0.4 mb. We present the charged-multiplicity distribution and its moments, and the charge-transfer distribution. The average inelastic charged multiplicity is 〈nc〉=6.65±0.31 and the two-charged-particle correlation functions are f2cc=4.52±1.32 and f2−−=0.47±0.35.
From an analysis of 2275 ν¯p→μ++X0 events at an average Q2 of 4.5 GeV2, there are presented the first measurements, up to one undetermined overall normalization constant, of the x dependence of the proton structure functions using antineutrinos, and of the u and d¯+s¯ quark distributions. The result for u(x) is in good agreement with models based on fits to electron and muon scattering data. With u(x) normalized to those models the absolute antiquark momentum distribution x[d¯x+s¯(x)] in the proton is determined.
Using data from the Fermilab 15 ft hydrogen bubble chamber, we have studied inclusive ϱ 0 production in antineutrino-proton charged-current interactions. We measure (0.21 ± 0.03) ϱ 0 /event, corresponding to ϱ 0 / π − =0.12 ± 0.02. As a function of Q 2 and for hadronic masses above a threshold region, the ϱ 0 / π − ratio shows little variation. At least 50% of the ϱ 0 's are consistent with coming from the current fragmentation region. The results agree reasonably well with the predictions of the quark fragmentation model of Feynman and field.
Data are presented on the reactions K ± p → π 0 X, K ± p → η X, pp → π 0 X and p p → π 0 X in the kinematic region with s ⋍ 200 GeV 2 , x ≳ 0.7 and − t ≲ 1 GeV 2 . The data agree well with the predictions of triple-Regge theory and the K ∗ and nucleon Regge trajectories extracted from the data agree with the linear trajectories extrapolated from the particle poles.