Version 2
Probing small Bjorken-$x$ nuclear gluonic structure via coherent J/$\psi$ photoproduction in ultraperipheral PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 262301, 2023.
Inspire Record 2648536 DOI 10.17182/hepdata.138867

Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/$\psi$ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (W$^\text{Pb}_{\gamma\text{N}}$), over a wide range of 40 $\lt$ W$^\text{Pb}_{\gamma\text{N}}$$\lt$ 400 GeV. Results are obtained using data at the nucleon-nucleon center-of-mass energy of 5.02 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 1.52 nb$^{-1}$. The cross section is observed to rise rapidly at low W$^\text{Pb}_{\gamma\text{N}}$, and plateau above W$^\text{Pb}_{\gamma\text{N}}$$\approx$ 40 GeV, up to 400 GeV, a new regime of small Bjorken-$x$ ($\approx$ 6 $\times$ 10$^{-5}$) gluons being probed in a heavy nucleus. The observed energy dependence is not predicted by current quantum chromodynamic models.

16 data tables

The differential coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of rapidity, in different neutron multiplicity classes: 0n0n, 0nXn, XnXn , and AnAn.

The differential coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of rapidity, in different neutron multiplicity classes: 0n0n, 0nXn, XnXn , and AnAn.

The total coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of photon-nuclear center-of-mass energy per nucleon $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$, measured in PbPb ultra-peripheral collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV. The $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$ values used correspond to the center of each rapidity range. The theoretical uncertainties is due to the uncertainties in the photon flux.

More…

Measurement of differential cross sections for the production of a Z boson in association with jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 108 (2023) 052004, 2023.
Inspire Record 2078067 DOI 10.17182/hepdata.115655

A measurement is presented of the production of Z bosons that decay into two electrons or muons in association with jets, in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data were recorded by the CMS Collaboration at the LHC with an integrated luminosity of 35.9 fb$^{-1}$. The differential cross sections are measured as a function of the transverse momentum ($p_\mathrm{T}$) of the Z boson and the transverse momentum and rapidities of the five jets with largest $p_\mathrm{T}$. The jet multiplicity distribution is measured for up to eight jets. The hadronic activity in the events is estimated using the scalar sum of the $p_\mathrm{T}$ of all the jets. All measurements are unfolded to the stable particle-level and compared with predictions from various Monte Carlo event generators, as well as with expectations at leading and next-to-leading orders in perturbative quantum chromodynamics.

70 data tables

Measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$.

Measured cross section as a function of the rapidity absolute value of the first jet, $|y(\text{j}_1)|$, and breakdown of the relative uncertainty.

More…

Measurements of the W boson rapidity, helicity, double-differential cross sections, and charge asymmetry in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 092012, 2020.
Inspire Record 1810913 DOI 10.17182/hepdata.94180

The differential cross section and charge asymmetry for inclusive W boson production at $\sqrt{s} =$ 13 TeV is measured for the two transverse polarization states as a function of the W boson absolute rapidity. The measurement uses events in which a W boson decays to a neutrino and either a muon or an electron. The data sample of proton-proton collisions recorded with the CMS detector at the LHC in 2016 corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The differential cross section and its value normalized to the total inclusive W boson production cross section are measured over the rapidity range $|y_\mathrm{W}|$ $\lt$ 2.5. In addition to the total fiducial cross section, the W boson double-differential cross section, d$^2\sigma$/d$p^\ell_\mathrm{T}$d$|\eta|$ and the charge asymmetry are measured as functions of the charged lepton transverse momentum and pseudorapidity. The precision of these measurements is used to constrain the parton distribution functions of the proton using the next-to-leading order NNPDF3.0 set.

67 data tables

Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel

Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel

Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel

More…

Study of central exclusive $\pi^+\pi^-$ production in proton-proton collisions at $\sqrt{s} =$ 5.02 and 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 718, 2020.
Inspire Record 1784063 DOI 10.17182/hepdata.100551

Central exclusive and semiexclusive production of $\pi^+\pi^-$ pairs is measured with the CMS detector in proton-proton collisions at the LHC at center-of-mass energies of 5.02 and 13 TeV. The theoretical description of these nonperturbative processes, which have not yet been measured in detail at the LHC, poses a significant challenge to models. The two pions are measured and identified in the CMS silicon tracker based on specific energy loss, whereas the absence of other particles is ensured by calorimeter information. The total and differential cross sections of exclusive and semiexclusive central $\pi^+\pi^-$ production are measured as functions of invariant mass, transverse momentum, and rapidity of the $\pi^+\pi^-$ system in the fiducial region defined as transverse momentum $p_\mathrm{T}(\pi)$ $>$ 0.2 GeV and pseudorapidity $|\eta(\pi)|$ $<$ 2.4. The production cross sections for the four resonant channels f$_0(500)$, $\rho^0(770)$, f$_0(980)$, and f$_2(1270)$ are extracted using a simple model. These results represent the first measurement of this process at the LHC collision energies of 5.02 and 13 TeV.

6 data tables

Differential cross section as a function of the invariant mass of the pion pair at 5.02 TeV, compared with generator-level simulations.

Differential cross section as a function of the invariant mass of the pion pair at 13 TeV, compared with generator-level simulations.

Differential cross section as a function of the transverse momentum of the pion pair at 5.02 TeV, compared with generator-level simulations.

More…

Measurement of differential cross sections for Z boson production in association with jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 965, 2018.
Inspire Record 1667854 DOI 10.17182/hepdata.91404

The production of a Z boson, decaying to two charged leptons, in association with jets in proton-proton collisions at a centre-of-mass energy of 13 TeV is measured. Data recorded with the CMS detector at the LHC are used that correspond to an integrated luminosity of 2.19 fb$^{-1}$. The cross section is measured as a function of the jet multiplicity and its dependence on the transverse momentum of the Z boson, the jet kinematic variables (transverse momentum and rapidity), the scalar sum of the jet momenta, which quantifies the hadronic activity, and the balance in transverse momentum between the reconstructed jet recoil and the Z boson. The measurements are compared with predictions from four different calculations. The first two merge matrix elements with different parton multiplicities in the final state and parton showering, one of which includes one-loop corrections. The third is a fixed-order calculation with next-to-next-to-leading order accuracy for the process with a Z boson and one parton in the final state. The fourth combines the fully differential next-to-next-to-leading order calculation with next-to-next-to-leading logarithm resummation and parton showering.

36 data tables

Measured cross section for Z+jets as a function of the exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the measured cross section for Z+jets as a function of the exclusive jet multiplicity, $N_{\text{jets}}$.

Measured cross section for Z+jets as a function of inclusive jet multiplicity, $N_{\text{jets}}^{\text{min}}$, and breakdown of the relative uncertainty.

More…

Measurements of Higgs boson properties in the diphoton decay channel with 36 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 052005, 2018.
Inspire Record 1654582 DOI 10.17182/hepdata.83417

Properties of the Higgs boson are measured in the two-photon final state using 36.1 fb$^{-1}$ of proton-proton collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS experiment at the Large Hadron Collider. Cross-section measurements for the production of a Higgs boson through gluon-gluon fusion, vector-boson fusion, and in association with a vector bosonor a top-quark pair are reported. The signal strength, defined as the ratio of the observed to the expected signal yield, is measured for each of these production processes as well as inclusively. The global signal strength measurement of $0.99 \pm 0.14$ improves on the precision of the ATLAS measurement at $\sqrt{s} = 7$ and 8 TeV by a factor of two. Measurements of gluon-gluon fusion and vector-boson fusion productions yield signal strengths compatible with the Standard Model prediction. Measurements of simplified template cross sections, designed to quantify the different Higgs boson production processes in specific regions of phase space, are reported. The cross section for the production of the Higgs boson decaying to two isolated photons in a fiducial region closely matching the experimental selection of the photons is measured to be $55 \pm 10$ fb, which is in good agreement with the Standard Model prediction of $64 \pm 2$ fb. Furthermore, cross sections in fiducial regions enriched in Higgs boson production in vector-boson fusion or in association with large missing transverse momentum, leptons or top-quark pairs are reported. Differential and double-differential measurements are performed for several variables related to the diphoton kinematics as well as the kinematics and multiplicity of the jets produced in association with a Higgs boson. No significant deviations from a wide array of Standard Model predictions are observed.

39 data tables

Measured differential cross section with associated uncertainties as a function of PT(2GAMMA). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of YRAP(2GAMMA). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of PTTHRUST(2GAMMA). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

More…

Measurement of the differential cross sections for the associated production of a W boson and jets in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 96 (2017) 072005, 2017.
Inspire Record 1610623 DOI 10.17182/hepdata.79859

A measurement of the differential cross sections for a W boson produced in association with jets in the muon decay channel is presented. The measurement is based on 13 TeV proton-proton collision data corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS detector at the LHC. The cross sections are reported as functions of jet multiplicity, jet transverse momentum pT, jet rapidity, the scalar pT sum of the jets, and angular correlations between the muon and the jet for different jet multiplicities. The measured cross sections are in agreement with predictions that include multileg leading-order (LO) and next-to-LO matrix element calculations interfaced with parton showers, as well as a next-to-next-to-LO calculation for the W boson and one jet production.

19 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 6.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 6.

The differential cross section measurement as a function of the transverse momentum of the first leading jet.

More…

Version 2
Fiducial, total and differential cross-section measurements of $t$-channel single top-quark production in $pp$ collisions at 8 TeV using data collected by the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 531, 2017.
Inspire Record 1512776 DOI 10.17182/hepdata.82544

Detailed measurements of $t$-channel single top-quark production are presented. They use 20.2 fb$^{-1}$ of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8 % (top quark) and 7.8 % (top antiquark), respectively. The total cross-sections are measured to be $\sigma_{\mathrm{tot}}(tq) = 56.7^{+4.3}_{-3.8}\;$pb for top-quark production and $\sigma_{\mathrm{tot}}(\bar{t}q) = 32.9^{+3.0}_{-2.7}\;$pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be $R_t=1.72 \pm 0.09$, with an improved relative precision of 4.9 % since several systematic uncertainties cancel in the ratio. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the $t$-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.

108 data tables

Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.

Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.

Definition of the fiducial phase space.

More…

Version 2
Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 052002, 2017.
Inspire Record 1491953 DOI 10.17182/hepdata.76995

Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 inverse femtobarns. The W bosons are identified through their decay mode W to mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta (HT) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of HT and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-next-to-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+jets background processes in searches for new physics at the LHC.

78 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 7.

More…

Measurement of the integrated and differential t-tbar production cross sections for high-pt top quarks in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 072002, 2016.
Inspire Record 1454211 DOI 10.17182/hepdata.78540

The cross section for pair production of top quarks (t-tbar) with high transverse momenta is measured in pp collisions, collected with the CMS detector at the LHC with sqrt(s) = 8 TeV in data corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurement is performed using lepton+jets events, where one top quark decays semileptonically, while the second top quark decays to a hadronic final state. The hadronic decay is reconstructed as a single, large-radius jet, and identified as a top quark candidate using jet substructure techniques. The integrated cross section and the differential cross sections as a function of top quark pt and rapidity are measured at particle level within a fiducial region related to the detector-level requirements and at parton level. The particle-level integrated cross section is found to be sigma[t-tbar] = 0.499 +/- 0.035 (stat+syst) +/- 0.095 (theory) +/- 0.013 (lumi) pb for top quark pt > 400 GeV. The parton-level measurement is sigma[t-tbar] = 1.44 +/- 0.10 (stat+syst) +/- 0.29 (theory) +/- 0.04 (lumi) pb. The integrated and differential cross section results are compared to predictions from several event generators.

3 data tables

The measurements of the integrated cross sections for $p_T^t > 400$ GeV.

Differential $t\bar{t}$ cross section in bins of $p_T$ for the $t$ jet at the particle level and the top quark at parton level.

Differential $t\bar{t}$ cross section in bins of $y$ for the $t$ jet at the particle level and the top quark at parton level.


Study of Z boson production in pPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 759 (2016) 36-57, 2016.
Inspire Record 1410832 DOI 10.17182/hepdata.71358

The production of Z bosons in pPb collisions at sqrt(s[NN]) = 5.02 TeV is studied by the CMS experiment via the electron and muon decay channels. The inclusive cross section is compared to pp collision predictions, and found to scale with the number of elementary nucleon-nucleon collisions. The differential cross sections as a function of the Z boson rapidity and transverse momentum are measured. Though they are found to be consistent within uncertainty with theoretical predictions both with and without nuclear effects, the forward-backward asymmetry suggests the presence of nuclear effects at large rapidities. These results provide new data for constraining nuclear parton distribution functions.

3 data tables

Differential cross section of the Z bosons in pPb collisions as a function of rapidity in the fiducial region for the combined leptonic decay channel.

Forward-backward asymmetry (AFB) distribution of the Z bosons in pPb collisions as a function of rapidity in the fiducial region for the combined leptonic decay channel.

Differential cross section of the Z bosons in pPb collisions as a function of transverse momentum in the fiducial region for the combined leptonic decay channel.


Dijet production in $\sqrt{s}=7$ TeV $pp$ collisions with large rapidity gaps at the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 754 (2016) 214-234, 2016.
Inspire Record 1402356 DOI 10.17182/hepdata.70762

A $6.8 \ {\rm nb^{-1}}$ sample of $pp$ collision data collected under low-luminosity conditions at $\sqrt{s} = 7$ TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with $p_\mathrm{T} > 20$ GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in $\Delta\eta^F$, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, $\tilde{\xi}$, of the fractional momentum loss of the proton assuming single diffractive dissociation ($pp \rightarrow pX$). Model comparisons indicate a dominant non-diffractive contribution up to moderately large $\Delta\eta^F$ and small $\tilde{\xi}$, with a diffractive contribution which is significant at the highest $\Delta\eta^F$ and the lowest $\tilde{\xi}$. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions.

6 data tables

The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.

The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.4.

The cross section differential in the fraction of the proton four-momentum carried by the Pomeron, LOG10(C=XI), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.

More…

Measurement of four-jet differential cross sections in $\sqrt{s}=8$ TeV proton-proton collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 12 (2015) 105, 2015.
Inspire Record 1394679 DOI 10.17182/hepdata.18620

Differential cross sections for the production of at least four jets have been measured in proton-proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider using the ATLAS detector. Events are selected if the four anti-$k_{t}$ R=0.4 jets with the largest transverse momentum ($p_{T}$) within the rapidity range $|y|<2.8$ are well separated ($dR^{\rm min}_{4j}>0.65$), all have $p_{T}>64$ GeV, and include at least one jet with $p_{T} >100$ GeV. The dataset corresponds to an integrated luminosity of 20.3 $fb^{-1}$. The cross sections, corrected for detector effects, are compared to leading-order and next-to-leading-order calculations as a function of the jet momenta, invariant masses, minimum and maximum opening angles and other kinematic variables.

46 data tables

Measured differential four-jet cross section for R=0.4 jets, in bins of pT1, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All uncertainties are given in %. The first uncertainty quoted is due to the number of data events. DSYS:mcstat is the statistical uncertainty due to the number of MC simulation events. The other columns, denoted with DSYS, correspond to the experimental systematic uncertainties arising from JES, JER, unfolding and luminosity, respectively.

Measured differential four-jet cross section for R=0.4 jets, in bins of pT2, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All other details are as for pT1.

Measured differential four-jet cross section for R=0.4 jets, in bins of pT3, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All other details are as for pT1.

More…

Study of B meson production in pPb collisions at sqrt(s_NN) = 5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 116 (2016) 032301, 2016.
Inspire Record 1390110 DOI 10.17182/hepdata.71407

The production cross sections of the B+, B0, and B0s mesons, and of their charge conjugates, are measured via exclusive hadronic decays in pPb collisions at the center-of-mass energy sqrt(s_NN) = 5.02 TeV with the CMS detector at the CERN LHC. The data set used for this analysis corresponds to an integrated luminosity of 34.6 inverse nanobarns. The production cross sections are measured in the transverse momentum range between 10 and 60 GeV/c. No significant modification is observed compared to proton-proton perturbative QCD calculations scaled by the number of incoherent nucleon-nucleon collisions. These results provide a baseline for the study of in-medium b quark energy loss in PbPb collisions.

8 data tables

The measured $p_{\rm{T}}$-differential production cross section of $B^{+}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

The measured $p_{\rm{T}}$-differential production cross section of $B^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

The measured $p_{\rm{T}}$-differential production cross section of $B_{s}^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

More…

Measurement of the differential cross section for top quark pair production in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 542, 2015.
Inspire Record 1370682 DOI 10.17182/hepdata.68516

The normalized differential cross section for top quark pair (tt-bar) production is measured in pp collisions at a centre-of-mass energy of 8 TeV at the CERN LHC using the CMS detector in data corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurements are performed in the lepton + jets (e/mu + jets) and in the dilepton (e+e-, mu+mu-, and e+-mu-+) decay channels. The tt-bar cross section is measured as a function of the kinematic properties of the charged leptons, the jets associated to b quarks, the top quarks, and the tt-bar system. The data are compared with several predictions from perturbative quantum chromodynamics up to approximate next-to-next-to-leading-order precision. No significant deviations are observed relative to the standard model predictions.

50 data tables

Normalized differential tt cross section (from l+jets channel) as a function of the transverse momentum pt of the lepton. The results are presented at particle level in the fiducial phase space. The statistical and systematic uncertainties are added in quadrature to yield the total uncertainty.

Normalized differential tt cross section (from l+jets channel) as a function of the pseudo-rapidity of the lepton. The results are presented at particle level in the fiducial phase space. The statistical and systematic uncertainties are added in quadrature to yield the total uncertainty.

Normalized differential tt cross section (from l+jets channel) as a function of the transverse momentum pt(b-jet) of the b-jet. The results are presented at particle level in the fiducial phase space. The statistical and systematic uncertainties are added in quadrature to yield the total uncertainty.

More…

Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ ^{*}\rightarrow 4\ell$ Decay Channels at $\sqrt{s}=8$ TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 115 (2015) 091801, 2015.
Inspire Record 1364361 DOI 10.17182/hepdata.57334

Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb$^{-1}$ of $pp$ collisions produced by the Large Hadron Collider at a center-of-mass energy of $\sqrt{s} = 8$ TeV and recorded by the ATLAS detector. Cross sections are obtained from measured $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ ^{*}\rightarrow 4\ell$ event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be $\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}$. The measurements are compared to state-of-the-art predictions.

17 data tables

Measured cross section in bins of $p_{\rm{T}}^{\rm{H}}$.

Measured cross section in bins of $|y^{\rm{H}}|$.

Measured cross section in bins of $N_{\rm{jets}}$.

More…

Measurements of differential and double-differential Drell-Yan cross sections in proton-proton collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 147, 2015.
Inspire Record 1332509 DOI 10.17182/hepdata.69869

Measurements of the differential and double-differential Drell-Yan cross sections in the dielectron and dimuon channels are presented. They are based on proton-proton collision data at sqrt(s) = 8 TeV recorded with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measured inclusive cross section in the Z peak region (60-120 GeV), obtained from the combination of the dielectron and dimuon channels, is 1138 +/- 8 (exp) +/- 25 (theo) +/- 30 (lumi) pb, where the statistical uncertainty is negligible. The differential cross section d(sigma)/d(m) in the dilepton mass range 15 to 2000 GeV is measured and corrected to the full phase space. The double-differential cross section d2(sigma)/d(m)d(abs(y)) is also measured over the mass range 20 to 1500 GeV and absolute dilepton rapidity from 0 to 2.4. In addition, the ratios of the normalized differential cross sections measured at sqrt(s) = 7 and 8 TeV are presented. These measurements are compared to the predictions of perturbative QCD at next-to-leading and next-to-next-to-leading (NNLO) orders using various sets of parton distribution functions (PDFs). The results agree with the NNLO theoretical predictions computed with FEWZ 3.1 using the CT10 NNLO and NNPDF2.1 NNLO PDFs. The measured double-differential cross section and ratio of normalized differential cross sections are sufficiently precise to constrain the proton PDFs.

15 data tables

Absolute Drell-Yan cross section measurements in the Z peak region (60 < m < 120 GeV). The uncertainties in the measurements include the experimental and theoretical systematic sources and the uncertainty in the integrated luminosity. The statistical component is negligible.

The Drell-Yan differential pre-FSR cross section D(SIG)/DM as measured in the combined dilepton channel for the full phase space. Theoretical uncertainty on acceptance is included.

The Drell-Yan pre-FSR dilepton rapidity distribution D(SIG)/DABS(YRAP) within the detector acceptance, for the mass bin 20-30 GeV, as measured in the combined dilepton channel.

More…

Study of Z production in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV in the dimuon and dielectron decay channels

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 03 (2015) 022, 2015.
Inspire Record 1322726 DOI 10.17182/hepdata.66612

The production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 150 inverse microbarns, while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 inverse picobarns. The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions, is found to be 1.06 +/- 0.05 (stat) +/- 0.08 (syst) in the dimuon channel and 1.02 +/- 0.08 (stat) +/- 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. This binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.

15 data tables

The measured Z boson production cross section in pp collisions as a function of the Z boson pT for the dimuon decay channel in |y|<2.0.

The measured Z boson production cross section in pp collisions as a function of the Z boson pT for the dielectron decay channel in |y|<1.44.

The measured Z boson production cross section in pp collisions as a function of the Z boson rapidity for the dimuon decay channel.

More…

Measurement of prompt J/psi pair production in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 09 (2014) 094, 2014.
Inspire Record 1298812 DOI 10.17182/hepdata.64263

Production of prompt J/$\psi$ meson pairs in proton-proton collisions at $\sqrt{s}$ = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 inverse-femtobarns. The two J/$\psi$ mesons are fully reconstructed via their decays into $\mu^+\mu^-$ pairs. This observation provides for the first time access to the high-transverse-momentum region of J/$\psi$ pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/$\psi$ transverse momentum ($p_T^{J/\psi}$) and rapidity (|$y^{J/\psi}$|): |$y^{J/\psi}$| lower than 1.2 for $p_T^{J/\psi}$ greater than 6.5 GeV/c; |$y^{J/\psi}$| in [1.2,1.43] for a $p_T$ threshold that scales linearly with |$y^{J/\psi}$| from 6.5 to 4.5 GeV/c; and |$y^{J/\psi}$| in [1.43,2.2] for $p_T^{J/\psi}$ greater than 4.5 GeV/c. The total cross section, assuming unpolarized prompt J/$\psi$ pair production is 1.49 $\pm$ 0.07 (stat.) $\pm$ 0.13 (syst.) nb. Different assumptions about the J/$\psi$ polarization imply modifications to the cross section ranging from -31% to +27%.

3 data tables

Differential cross section D(SIG)/DM(J/PSI J/PSI) in bins of the J/PSI pair invariant mass, M(J/PSI J/PSI).

Differential cross section D(SIG)/DABS(DELTA(YRAP)) in bins of the absolute rapidity difference between J/PSI mesons, ABS(DELTA(YRAP)).

Differential cross section D(SIG)/DPT(J/PSI J/PSI) in bins of the transverse momentum of the J/PSI pair, PT(J/PSI J/PSI).


Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 714 (2012) 136-157, 2012.
Inspire Record 1113442 DOI 10.17182/hepdata.58908

The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.

3 data tables

The measured Lambda/B integrated cross section and the ratio of anti-Lambda/B to Lambda/B cross sections.

The measured Lambda/B differential cross section and the ratio of anti-Lambda/B to Lambda/B cross sections as a function of the Lambda/B transverse momentum The second and third systematic errors on the cross sections are the common luminosity and branching fraction uncertainties respectively.

The measured Lambda/B differential cross section and the ratio of anti-Lambda/B to Lambda/B cross sections as a function of the Lambda/B absolute rapidity. The second and third systematic errors on the cross sections are the common luminosity and branching fraction uncertainties respectively.


Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton-proton collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 72 (2012) 2216, 2012.
Inspire Record 1102908 DOI 10.17182/hepdata.68066

A study of dijet production in proton-proton collisions was performed at sqrt(s) = 7 TeV for jets with pt > 35 GeV and abs(y) < 4.7 using data collected with the CMS detector at the LHC in 2010. Events with at least one pair of jets are denoted as 'inclusive'. Events with exactly one pair of jets are called 'exclusive'. The ratio of the cross section of all pairwise combinations of jets to the exclusive dijet cross section as a function of the rapidity difference between jets abs(Delta(y)) is measured for the first time up to abs(Delta(y)) = 9.2. The ratio of the cross section for the pair consisting of the most forward and the most backward jet from the inclusive sample to the exclusive dijet cross section is also presented. The predictions of the Monte Carlo event generators PYTHIA6 and PYTHIA8 agree with the measurements. In both ratios the HERWIG++ generator exhibits a more pronounced rise versus abs(Delta(y)) than observed in the data. The BFKL-motivated generators CASCADE and HEJ+ARIADNE predict for these ratios a significantly stronger rise than observed.

2 data tables

Inclusive to exclusive dijet production ratio.

Mueller-Navelet to exclusive dijet production ratio.


Inclusive b-jet production in pp collisions at sqrt(s)=7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 04 (2012) 084, 2012.
Inspire Record 1089835 DOI 10.17182/hepdata.58503

The inclusive b-jet production cross section in pp collisions at a center-of-mass energy of 7 TeV is measured using data collected by the CMS experiment at the LHC. The cross section is presented as a function of the jet transverse momentum in the range 18 < pT < 200 GeV for several rapidity intervals. The results are also given as the ratio of the b-jet production cross section to the inclusive jet production cross section. The measurement is performed with two different analyses, which differ in their trigger selection and b-jet identification: a jet analysis that selects events with a b jet using a sample corresponding to an integrated luminosity of 34 inverse picobarns, and a muon analysis requiring a b jet with a muon based on an integrated luminosity of 3 inverse picobarns. In both approaches the b jets are identified by requiring a secondary vertex. The results from the two methods are in agreement with each other and with next-to-leading order calculations, as well as with predictions based on the PYTHIA event generator.

12 data tables

B-jet cross section from the 'jet' analysis.

B-jet cross section from the 'muon' analysis.

B-jet cross section extrapolated from the 'muon' analysis.

More…

Measurement of the Rapidity and Transverse Momentum Distributions of Z Bosons in pp Collisions at sqrt(s)=7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 85 (2012) 032002, 2012.
Inspire Record 941555 DOI 10.17182/hepdata.58738

Measurements of the normalized rapidity (y) and transverse momentum (qT) distributions of Drell-Yan muon and electron pairs in the Z-boson mass region (60<M(ll)<120 GeV) are reported. The results are obtained using a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 36 inverse picobarns. The distributions are measured over the ranges |y|<3.5 and qT<600 GeV and compared with QCD calculations using recent parton distribution functions. Overall agreement is observed between the models and data for the rapidity distribution, while no single model describes the Z transverse-momentum distribution over the full range.

8 data tables

Normalized differential cross section for Drell-Yan lepton pairs in the Z0 mass region as a function of the absolute value of rapidity of the Z0, for separate muon and lepton channels and the combined measurement. The error shown is the combined statistical and systematic.

Normalized differential cross section for Drell-Yan lepton pairs in the Z0 mass region as a function of the transverse momentum of the Z0, for separate muon and lepton channels and the combined measurement. The error shown is the combined statistical and systematic.

Covariance matrix values between the rapidity bins for the muons data sample.

More…

Measurement of the Cross Section for Prompt Isolated Diphoton Production in p\bar p Collisions at \sqrt{s} = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev.D 84 (2011) 052006, 2011.
Inspire Record 915978 DOI 10.17182/hepdata.60557

This article reports a measurement of the production cross section of prompt isolated photon pairs in proton-antiproton collisions at \sqrt{s} = 1.96 TeV using the CDF II detector at the Fermilab Tevatron collider. The data correspond to an integrated luminosity of 5.36/fb. The cross section is presented as a function of kinematic variables sensitive to the reaction mechanisms. The results are compared with three perturbative QCD calculations: (1) a leading order parton shower Monte Carlo, (2) a fixed next-to-leading order calculation and (3) a next-to-leading order/next-to-next-to-leading-log resummed calculation. The comparisons show that, within their known limitations, all calculations predict the main features of the data, but no calculation adequately describes all aspects of the data.

6 data tables

Diphoton production cross section as a function of the diphoton invariant mass.

Diphoton production cross section as a function of the diphoton transverse momentum.

Diphoton production cross section as a function of the azimuthal angle difference in the two photons.

More…

Measurement of the Strange B Meson Production Cross Section with J/Psi phi Decays in pp Collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 84 (2011) 052008, 2011.
Inspire Record 914325 DOI 10.17182/hepdata.57944

The B^0_s differential production cross section is measured as functions of the transverse momentum and rapidity in pp collisions at sqrt(s) = 7 TeV, using the J/Psi phi decay, and compared with predictions based on perturbative QCD calculations at next-to-leading order. The data sample, collected by the CMS experiment at the LHC, corresponds to an integrated luminosity of 40 inverse picobarns. The B^0_s is reconstructed from the decays J/Psi to an oppositely charged muon pair and phi to K+ K-. The integrated B^0_s cross section times B^0_s to J/Psi phi branching fraction in the range 8 < pt(B) < 50 GeV/c and |y(b)| < 2.4 is measured to be 6.9 +/- 0.6 +/- 0.6 nb, where the first uncertainty is statistical and the second is systematic.

3 data tables

Total integrated B/S cross section times the branching fraction to J/PSI PHI in the given kinematic range.

The measured differential cross section as a function of the transverse momentum of the B/S in the |rapidity| range < 24.

The measured differential cross section as a function of the rapidity of the B/S in the transverse momentum range 8 to 50 GeV.


Measurement of the B0 production cross section in pp Collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 106 (2011) 252001, 2011.
Inspire Record 896211 DOI 10.17182/hepdata.57688

Measurements of the differential production cross sections in transverse momentum and rapidity for B0 mesons produced in pp collisions at sqrt(s) = 7 TeV are presented. The dataset used was collected by the CMS experiment at the LHC and corresponds to an integrated luminosity of 40 inverse picobarns. The production cross section is measured from B0 meson decays reconstructed in the exclusive final state J/Psi K-short, with the subsequent decays J/Psi to mu^+ mu^- and K-short to pi^+ pi^-. The total cross section for pt(B0) > 5 GeV and y(B0) < 2.2 is measured to be 33.2 +/- 2.5 +/- 3.5 microbarns, where the first uncertainty is statistical and the second is systematic.

3 data tables

Total integrated cross section in the given kinematic range. The (sys) error includes all the systematic uncertainties.

Measured differential cross section as a function of the transverse momentum of the B0 particle.

Measured differential cross section as a function of the rapidity of the B0 particle.


Measurement of the B+ Production Cross Section in pp Collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 106 (2011) 112001, 2011.
Inspire Record 883318 DOI 10.17182/hepdata.57687

Measurements of the total and differential cross sections with respect to transverse momentum and rapidity for B+ mesons produced in pp collisions at sqrt(s) = 7 TeV are presented. The data correspond to an integrated luminosity of 5.8 inverse picobarns collected by the CMS experiment operating at the LHC. The exclusive decay B+ to J/psi K+, with the J/psi decaying to an oppositely charged muon pair, is used to detect B+ mesons and to measure the production cross section as a function of the transverse momentum and rapidity of the B. The total cross section for p_t(B) > 5 GeV and |y(B)| < 2.4 is measured to be 28.1 +/- 2.4 +/- 2.0 +/- 3.1 microbarns, where the first uncertainty is statistical, the second is systematic, and the last is from the luminosity measurement.

3 data tables

Total integrated cross section in the given kinematic range. The (sys) error includes the uncertainty in the branching fraction.

Measured differential cross section as a function of the transverse momentum of the B+ particle.

Measured differential cross section as a function of the rapidity of the B+ particle.


Measurement of $d\sigma/dy$ of Drell-Yan $e^+e^-$ pairs in the $Z$ Mass Region from $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

The CDF collaboration Aaltonen, Timo Antero ; Adelman, Jahred A. ; Alvarez Gonzalez, Barbara ; et al.
Phys.Lett.B 692 (2010) 232-239, 2010.
Inspire Record 856131 DOI 10.17182/hepdata.52674

We report on a CDF measurement of the total cross section and rapidity distribution, $d\sigma/dy$, for $q\bar{q}\to \gamma^{*}/Z\to e^{+}e^{-}$ events in the $Z$ boson mass region ($66<M_{ee}<116$GeV/c$^2$) produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$TeV with 2.1fb$^{-1}$ of integrated luminosity. The measured cross section of $257\pm16$pb and $d\sigma/dy$ distribution are compared with Next-to-Leading-Order(NLO) and Next-to-Next-to-Leading-Order(NNLO) QCD theory predictions with CTEQ and MRST/MSTW parton distribution functions (PDFs). There is good agreement between the experimental total cross section and $d\sigma/dy$ measurements with theoretical calculations with the most recent NNLO PDFs.

2 data tables

Total cross section integrated up to ABS(YRAP)=2.9.

Rapiditiy distribution of E+ E- pairs in the mass range from 66 to 116 GeV.


Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-Hadron Correlations in p+p Collisions at sqrt(s)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 103 (2009) 082002, 2009.
Inspire Record 816469 DOI 10.17182/hepdata.57326

The momentum distribution of electrons from semi-leptonic decays of charm and bottom for mid-rapidity |y|<0.35 in p+p collisions at sqrt(s)=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 2 < p_T < 7 GeV/c. The ratio of the yield of electrons from bottom to that from charm is presented. The ratio is determined using partial D/D^bar --> e^{+/-} K^{-/+} X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in p_T. A fixed-order-plus-next-to-leading-log (FONLL) perturbative quantum chromodynamics (pQCD) calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is \sigma_{b\b^bar}= 3.2 ^{+1.2}_{-1.1}(stat) ^{+1.4}_{-1.3}(syst) micro b.

6 data tables

Bottom contribution to the electrons from heavy flavor decay as a function of PT. These values has been obtained using g3data software which to extract the data from the plot and should therefore be used with caution. The g3data program indicates an extra uncertainty of 0.01 on these values.

Differential bottom production cross section at mid rapidity (y=0) To obtain this value, the differential "bottom-decay" electrons cross-section has been extrapolated to PT=0 using the spectrum shape predicted by pQCD. The b->e branching ratio used was 10 +-1%.

Invariant cross section of electrons from heavy flavor decay versus PT These values has been obtained using g3data software which to extract the data from the plot and should therefore be used with caution. The values in the last column indicate the level of uncertainty intoduced by g3data.

More…

Observation of exclusive charmonium production and $\gamma+\gamma$ to $\mu^+\mu^-$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.Lett. 102 (2009) 242001, 2009.
Inspire Record 812821 DOI 10.17182/hepdata.55758

We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| < 0.6, with M(mumu) in [3.0,4.0] GeV/c2, and either no other particles, or one additional photon, detected. The J/psi and the psi(2S) are prominent, on a continuum consistent with the QED process gamma+gamma --> mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)| < 0.6, M(mumu) in [3.0,4.0] GeV/c2, is [Integral ds/(dM.deta1.deta2)] = 2.7+/-0.5 pb, consistent with QED predictions. We put an upper limit on the cross section for odderon exchange in J/psi production: ds/dy(y=0) (J/psi_O/IP) < 2.3 nb at 95% C.L.

5 data tables

Prompt J/psi cross section from exclusive photoproduction at mid rapidity.

Prompt Psi(2S) cross section from exclusive photoproduction at mid rapidity.

Prompt photoproduction cross-section ratio Psi(2S)/(J/psi) at mid rapidity.

More…

Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Lett.B 670 (2009) 313-320, 2009.
Inspire Record 778611 DOI 10.17182/hepdata.73669

The PHENIX experiement has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions from light meson decays to e^+e^- pairs have been determined based on measurements of hadron production cross sections by PHENIX. They account for nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which is consistent with QCD calculations and measurements of single leptons by PHENIX.

2 data tables

Differential charm cross section at mid rapidity An additional +-39.5 microbarn error, due to the validity of the model used to extrapolate the data, is not included The contribution from beauty estimated to be 3.7 microbarn, has been subtracted. The c->e branching ratio used was 9.5 +-1.0%.

Total charm cross section An additional systemactic error of +- 200 microbarn, due to the validity of the model used to extrapolate the data, is not included. To obtain the total charm cross section, the differential charm cross section has been extrapolated to the whole rapidity range, using a HVQMNR rapidity distribution with aCTEQ5M PDF.


J / psi production versus transverse momentum and rapidity in p+p collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 232002, 2007.
Inspire Record 731611 DOI 10.17182/hepdata.57311

J/Psi production in p+p collisions at sqrt(s) = 200 GeV has been Measured in the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over a rapidity range of -2.2 < y < 2.2 and a transverse momentum range of 0 < pT < 9 GeV/c. The statistics available allow a detailed measurement of both the pT and rapidity distributions and are sufficient to constrain production models. The total cross section times branching ratio determined for J/Psi production is B_{ll} sigma_pp^J/psi = 178 +/- 3(stat) +/- 53(syst) +/- 18(norm) nb.

6 data tables

J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at mid rapidity : -0.35<y<0.35.

J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at forward rapidities : absolute value of y belongs to [1.2;2.2].

Mean PT^2 value at mid rapidities : -0.35<y<0.35 The mean PT is obtained with a phenomonological fit of the J/PSI distribution in PT of the form (1/(2*PI*PT))*D(SIG)/DPT = A ( 1+(PT/B)^2)^-6 .The systematic error includes the incertainty from the maximum shape deviation permitted by the point-to-point correlated errors and from allowing the exponent of the fit fonctionto be a free parameter.

More…

Measurement of single muons at forward rapidity in p + p collisions at s**(1/2) = 200-GeV and implications for charm production.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 76 (2007) 092002, 2007.
Inspire Record 726260 DOI 10.17182/hepdata.63824

Muon production at forward rapidity (1.5 < |\eta| < 1.8) has been measured by the PHENIX experiment over the transverse momentum range 1 < p_T \le 3 GeV/c in sqrt(s) = 200 GeV p+p collisions at the Relativistic Heavy Ion Collider. After statistically subtracting contributions from light hadron decays an excess remains which is attributed to the semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks. The resulting muon spectrum from heavy flavor decays is compared to PYTHIA and a next-to-leading order perturbative QCD calculation. PYTHIA is used to determine the charm quark spectrum that would produce the observed muon excess. The corresponding differential cross section for charm quark production at forward rapidity is determined to be d\sigmac c^bar)/dy|_(y=1.6)=0.243 +/- 0.013 (stat.) +/- 0.105 (data syst.) ^(+0.049(-0.087) (PYTHIA syst.) mb.

1 data table

Differential charm cross section at forward rapidity of 1.6 An additional +0.049 -0.087 systematic uncertainty associated with the PYTHIA normalization is not included in the values given.


Measurement of high-p(T) single electrons from heavy-flavor decays in p + p collisions at s**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 97 (2006) 252002, 2006.
Inspire Record 725484 DOI 10.17182/hepdata.57283

The momentum distribution of electrons from decays of heavy flavor (charm and beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent methods have been used to determine the heavy flavor yields, and the results are in good agreement with each other. A fixed-order-plus-next-to-leading-log pQCD calculation agrees with the data within the theoretical and experimental uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/- 224^sys micro barns.

3 data tables

Heavy-flavor decay electrons invariant differential cross-section An additional 10% normalization uncertainty is to add.

Differential charm cross section To obtain this value, the differential "charm-decay" electrons cross-section, integrated over PT>0.4 GeV/c, has been extrapolated down to PT=0 using the spectrum shape predicted by a fixed-order-plus-next-to-leading-log (FONLL)calculation. The contribution from beauty and beauty cascades, estimated to be 0.1 microbarn, has been substracted, and the c->e branching ratio used was 9.5 +- 1.0%.

Total charm cross section To obtain the total charm cross section, the differential charm cross section has been extrapolated to the whole rapidity range, using a HVQMNR rapidity distribution with aCTEQ5M PDF.


J/psi production and nuclear effects for d + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, Stephen Scott ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 96 (2006) 012304, 2006.
Inspire Record 688457 DOI 10.17182/hepdata.57513

J/psi production in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV has been measured by the PHENIX experiment at rapidities -2.2 < y < +2.4. The cross sections and nuclear dependence of J/\psi production versus rapidity, transverse momentum, and centrality are obtained and compared to lower energy p+A results and to theoretical models. The observed nuclear dependence in d+Au collisions is found to be modest, suggesting that the absorption in the final state is weak and the shadowing of the gluon distributions is small and consistent with Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-based parameterizations that fit deep-inelastic scattering and Drell-Yan data at lower energies.

11 data tables

J/PSI differential cross section in P+P reactions( times di-lepton branching ratio B=5.9%) as a function of rapidity.

J/PSI nuclear modification factor RDA,as a function of rapidity.

Total cross-section for J/PSI production in P P reactions. The total cross section is estimated using a pythia calculation, normalized to our data. The di-lepton branching ratio used is 5.9%.The systematic error given is due to the fit. The choice of the PDF and model was estimated to have little impact in the value of the total cross section.

More…

Measurement of inclusive differential cross sections for Upsilon(1S) production in p anti-p collisions at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 94 (2005) 232001, 2005.
Inspire Record 676877 DOI 10.17182/hepdata.51525

We present measurements of the inclusive production cross sections of the Upsilon(1S) bottomonium state in ppbar collisions at sqrt(s) = 1.96 TeV. Using the Upsilon(1S) to mu+mu- decay mode for a data sample of 159 +- 10 pb^-1 collected by the D0 detector at the Fermilab Tevatron collider, we determine the differential cross sections as a function of the Upsilon(1S) transverse momentum for three ranges of the Upsilon(1S) rapidity: 0 < |y| < 0.6, 0.6 < |y| < 1.2, and 1.2 < |y| < 1.8.

2 data tables

Cross section per unit of rapidity times branching ratio to MU+ MU-. Systematic (DSYS) error does not include the 6.1 PCT uncertainty on the luminosity.

Normalized differential cross section for UPSI(1S) production.. Errors contain statistical and systematics (excluding luminosity error).


Centrality dependence of charm production from single electrons measurement in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 082301, 2005.
Inspire Record 660611 DOI 10.17182/hepdata.57254

The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are statistically removed. The subtracted ``non-photonic'' electron spectra are primarily due to the semi-leptonic decays of hadrons containing heavy quarks (charm and bottom). For all centralities, charm production is found to scale with the nuclear overlap function, T_AA. For minimum-bias collisions the charm cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/- 160 (sys.) microbarns.

18 data tables

Value of the Alpha power as used in a fit of dN/dy versus Ncoll of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value only includes data from Au+Au collisions The value of Alpha = 1 is the expectation in the absence of medium effects.

Value of the Alpha power as used in a fit of dN/dy versus Ncoll, of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value is calculated including previous data of p+p collisions, measured by PHENIX, in addition of the Au+Au data The value of Alpha = 1 is the expectation in the absence of medium effects.

Spectrum in transverse momentum of electrons created in open heavy flavor decays, for minimum bias events.

More…

J / psi production from proton proton collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 92 (2004) 051802, 2004.
Inspire Record 623000 DOI 10.17182/hepdata.57093

J/psi production has been measured in proton-proton collisions at sqrt(s)= 200 GeV over a wide rapidity and transverse momentum range by the PHENIX experiment at RHIC. Distributions of the rapidity and transverse momentum, along with measurements of the mean transverse momentum and total production cross section are presented and compared to available theoretical calculations. The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/- 0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/- 0.16(sys) GeV/c.

5 data tables

Measured J/PSI distribution in PT for the e+e- channel. The value of B, the branching fraction to either electrons or muons is the average value from PDG : 5.9%.The rapidity range is -0.35<y<0.35. Incertainties are 1-sigma statistical errors on the (signal - background) net yield. There is a 10% overall absolute cross section normalization error in addition to the error given.

Measured J/PSI distribution in PT for the mu+mu- channel. The value of B, the branching fraction to either electrons or muons, is the average value from PDG: 5.9%.The rapidity range is -2.2<y<-1.2. Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.

J/PSI distribution in rapidity. The data at rapidity = 0 is from the electron arm, the data from the muon arm, corresponding to forward rapidity is divided in two bins.The value of B,the branching fraction to either electrons or muons, is 5.9%, the average value from PDG.Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.

More…

Measurement of d sigma / d y for high mass Drell-Yan e+ e- pairs from p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 63 (2001) 011101, 2001.
Inspire Record 529157 DOI 10.17182/hepdata.42983

We report on the first measurement of the rapidity distribution dsigma/dy over nearly the entire kinematic region of rapidity for e^+e^- pairs in the Z-boson region of 66<M_{ee}<116 GeV/c^2 and at higher mass M_{ee}>116 GeV/c^2. The data sample consists of 108 pb^{-1} of ppbar collisions at \sqrt{s}=1.8 TeV taken by the Collider Detector at Fermilab during 1992--1995. The total cross section in the $Z$-boson region is measured to be 252 +- 11 pb. The measured total cross section and d\sigma/dy are compared with quantum chromodynamics calculations in leading and higher orders.

1 data table

No description provided.


Upsilon production in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 75 (1995) 4358, 1995.
Inspire Record 398187 DOI 10.17182/hepdata.42349

We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential, (d2σdPtdy)y=0, and integrated cross sections in pp¯ collisions at s=1.8 TeV using a sample of 16.6 ± 0.6 pb−1 collected by the Collider Detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. Comparison is made to a leading order QCD prediction.

7 data tables

SIG*Br(UPSI --> MU+ MU-).

SIG*Br(UPSI --> MU+ MU-).

SIG*Br(UPSI --> MU+ MU-).

More…

The Charge asymmetry in W boson decays produced in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 74 (1995) 850-854, 1995.
Inspire Record 379592 DOI 10.17182/hepdata.42427

The charge asymmetry has been measured using $19,039W$ decays recorded by the CDF detector during the 1992-93 run of the Tevatron Collider. The asymmetry is sensitive to the ratio of $d$ and $u$ quark distributions to $x<0.01$ at $Q~2 \approx M_W~2$, where nonperturbative effects are minimal. It is found that of the two current sets of parton distributions, those of Martin, Roberts and Stirling (MRS) are favored over the sets most recently produced by the CTEQ collaboration. The $W$ asymmetry data provide a stronger constraints on $d/u$ ratio than the recent measurements of $F_2~{\mu n}/F_2~{\mu p}$ which are limited by uncertainties originating from deutron corrections.

1 data table

Charge asymmetry defined as (DSIG(Q=L+)/DYRAP - DSIG(Q=L-)/DYRAP)/ (DSIG(Q=L+)/DYRAP + DSIG(Q=L-)/DYRAP). Here LEPTON are E and MU.


Lepton asymmetry in W decays from anti-p p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 68 (1992) 1458-1462, 1992.
Inspire Record 323033 DOI 10.17182/hepdata.19880

The charge asymmetry of leptons from W-boson decay has been measured using p¯p data from the Collider Detector at Fermilab at √s =1.8 TeV. The observed asymmetry is well described by most of the available parton distributions.

3 data tables

Electrons in the central region.

Muons in the central region.

Plug electrons.


Comparison of Inclusive Charged Pion Production in pi+- p Interactions at 100-GeV/c.

Whitmore, J. ; Oh, B.Y. ; Pratap, M. ; et al.
Phys.Rev.D 16 (1977) 3137-3149, 1977.
Inspire Record 123295 DOI 10.17182/hepdata.24482

Inclusive single-particle spectra for π± production are presented for data from π±p interactions at 100 GeV/c. The spectra for the four reactions π±p→π±+anything are compared as a function of laboratory longitudinal momentum, Feynman x, center-of-mass (c.m.) rapidity, and transverse momentum squared. Comparisons are also made between these data and analogous data from 16 and 18.5 GeV/c π±p interactions and the energy dependence is discussed. Average values of the transverse momentum are given as a function of the longitudinal momentum and charged-particle multiplicity. A comparison of the charge distributions is presented as a function of rapidity and c.m. energy.

3 data tables

No description provided.

No description provided.

No description provided.


pi+ p, K+ p and p p Topological Cross-Sections and Inclusive Interactions at 100-GeV Using a Hybrid Bubble Chamber-Spark Chamber System and a Tagged Beam

Morse, W.M. ; Barnes, V.E. ; Carmony, D.D. ; et al.
Phys.Rev.D 15 (1977) 66, 1977.
Inspire Record 108830 DOI 10.17182/hepdata.24534

π+p, K+p, and pp interactions at 100 GeV are studied using the Fermilab hybrid 30-inch bubble chamber with associated downstream multiparticle spectrometer and an unseparated tagged positive beam. Topological cross sections and charged-particle-multiplicity moments are presented and good agreement is found with Koba-Nielsen-Olesen scaling. The charged-multiplicity second moment, f2cc, and the second moment of produced (+ -) pairs, f2−−, are presented both with and without the diffractive-dissociation events, and are discussed in terms of the two-component model invoked to explain pp multiplicity distributions above 100 GeV. Single-particle inclusive distributions are presented and studied in terms of the Regge-Mueller forms of approach to scaling at asymptotic energies. Pomeron factorization is found to hold in the target-proton-associated backward center-of-mass hemisphere for inclusive particle production by incident π+, K+, and protons.

3 data tables

No description provided.

No description provided.

No description provided.