DIFFERENTIAL CROSS-SECTIONS FOR K+ p ELASTIC SCATTERING FROM 0.865-GeV/c TO 2.125-GeV/c: DATA LISTING

Abe, K. ; Barnett, B.A. ; Goldman, J.H. ; et al.
Phys.Rev.D 11 (1975) 1719-1732, 1975.
Inspire Record 81409 DOI 10.17182/hepdata.4763

We report on an experiment to obtain differential cross sections for K+p elastic scattering in the vicinity of the possible exotic baryon, the Z1*(1900). The differential cross sections are based on typically 70 000 selected events in the angular region −0.9≤cosθc.m.≤0.9 at each of 22 momenta from 0.865 to 2.125 GeV/c. The data are intended for use in partial-wave analysis to search for the Z1*.

1 data table match query

No description provided.


Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from sqrt(s_NN) = 22.5 to 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 78 (2008) 044902, 2008.
Inspire Record 785509 DOI 10.17182/hepdata.143616

A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.

0 data tables match query

Total cross-sections of protons, anti-protons, and pi and K mesons on hydrogen and deuterium in the momentum range 6-GeV/c to 22-GeV/c

Galbraith, W. ; Jenkins, E.W. ; Kycia, T.F. ; et al.
Phys.Rev. 138 (1965) B913-B920, 1965.
Inspire Record 48756 DOI 10.17182/hepdata.5477

The total cross sections σT of p, p¯, π±, and K± on hydrogen and deuterium have been measured between 6 and 22 GeVc at intervals of 2GeVc to an accuracy greater than previously reported. The method utilized was a conventional good-geometry transmission experiment with scintillation counters subtending various solid angles at targets of liquid H2 and D2. With the increase in statistical accuracy of the data, it was found that a previously adopted procedure of linearly extrapolating to zero solid angle the partial cross sections measured at finite solid angles was not a sufficiently accurate procedure from which to deduce σT. The particle-neutron cross sections are derived by applying the Glauber screening correction to the difference between the particle-deuteron and particle-proton cross sections. The cross sections σT(π+d) and σT(π−d) are equal at all measured momenta, which confirms the validity of charge symmetry up to 20GeVc. Results are presented showing the variation of cross sections with momentum; evidence is presented for a small but significant decrease in σT(pp) [and σT(pn)] in the momentum region above 12GeVc.

0 data tables match query

Measurement of the $x$- and $Q^2$-Dependence of the Asymmetry $A_1$ on the Nucleon

The CLAS collaboration Dharmawardane, K.V. ; Kuhn, S.E. ; Bosted, Peter E. ; et al.
Phys.Lett.B 641 (2006) 11-17, 2006.
Inspire Record 717523 DOI 10.17182/hepdata.6726

We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.

1 data table match query

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5500 GeV.


Differential cross-sections of elastic p p scattering in the energy range 8-70 gev

Beznogikh, G.G. ; Bujak, A. ; Kirillova, L.F. ; et al.
Nucl.Phys.B 54 (1973) 78-96, 1973.
Inspire Record 84176 DOI 10.17182/hepdata.8006

In this paper we present tables of absolute differential cross sections of elastic pp scattering together with the values of the slope parameter B and the real-part parameter α, where B= d d t In dσ d t α= Re A(0) Im A(0) and A (0) is the amplitude of elastic pp scattering at t = 0. The cross-section data have been obtained at the Serpukhov accelerator from 8 to 70 GeV in the | t |-range 0.0007 − 0.12 (GeV/ c ) 2 .

1 data table match query

No description provided.


Separated structure functions for the exclusive electroproduction of K+ Lambda and K+ Sigma0 final states.

The CLAS collaboration Ambrozewicz, P. ; Carman, D.S. ; Feuerbach, R.J. ; et al.
Phys.Rev.C 75 (2007) 045203, 2007.
Inspire Record 732363 DOI 10.17182/hepdata.4994

We report measurements of the exclusive electroproduction of $K^+\Lambda$ and $K^+\Sigma^0$ final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions $\sigma_T$, $\sigma_L$, $\sigma_{TT}$, and $\sigma_{LT}$ were extracted from the $\Phi$- and $\epsilon$-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first $\sigma_L/\sigma_T$ separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from $0.5\leq Q^2\leq 2.8$ GeV$^2$ and invariant energy from $1.6\leq W\leq 2.4$ GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the $\Lambda$ and $\Sigma^0$ hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.

1 data table match query

Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV.


Measurement of the A-dependence of deep inelastic electron scattering

Gomez, J. ; Arnold, R.G. ; Bosted, Peter E. ; et al.
Phys.Rev.D 49 (1994) 4348-4372, 1994.
Inspire Record 359103 DOI 10.17182/hepdata.22575

Cross sections for deep-inelastic electron scattering from liquid deuterium, gaseous He4, and solid Be, C, Al, Ca, Fe, Ag, and Au targets were measured at the Stanford Linear Accelerator Center using electrons with energies ranging from 8 to 24.5 GeV. These data cover a range in the Bjorken variable x from 0.089 to 0.8, and in momentum transfer Q2 from 2 to 15 (GeV/c)2. The ratios of cross sections per nucleon (σAσd)is for isoscalar nuclei have been extracted from the data. These ratios are greater than unity in the range 0.1<x<0.3, while for 0.3<x<0.8 they are less than unity and decrease logarithmically with atomic weight A, or linearly with average nuclear density. No Q2 dependence in the ratios was observed over the kinematic range of the data. These results are compared to various theoretical predictions.

1 data table match query

Additional overall systematic error of 1 pct plus a target to target systematic error of 0.9 pct.


Proton proton differential cross-sections from 600 to 1800 mev/c

Ryan, B.A. ; Kanofsky, A. ; Devlin, T.J. ; et al.
Phys.Rev.D 3 (1971) 1-9, 1971.
Inspire Record 68275 DOI 10.17182/hepdata.23725

Proton-proton elastic differential cross sections have been measured for incident laboratory momenta of 600-1800 MeVc and c.m. angles of 5°-90°. The data span, in a single experiment, the intermediate energy region from isotropic differential cross sections at lower energies to the development of a clear diffraction peak at higher energies. Parameters for phenomenological formulations derived from the experimental results are presented.

1 data table match query

No description provided.


Elastic and quasi-elastic p p scattering in Li-6_H and Li-6_D targets between 1.1-GeV and 2.4-GeV.

Ball, J. ; Allgower, C.E. ; Beddo, M. ; et al.
Eur.Phys.J.C 11 (1999) 51-67, 1999.
Inspire Record 505045 DOI 10.17182/hepdata.43403

A polarized proton beam extracted from SATURNE II, the Saclay polarized target with$^6$Li compounds, and

1 data table match query

The polarization transfer parameter KNN measured with polarized protons on the polarized LiH and LiD targets. The relative uncertainty due to the P-C analysing power is +- 6 PCT.


p p elastic scattering polarization transfer K(onno) and depolarization D(onon) between 1.94-GeV and 2.80-GeV.

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Eur.Phys.J.C 5 (1998) 453-460, 1998.
Inspire Record 481194 DOI 10.17182/hepdata.43094

A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to measure the rescattering observables$K_{onno}$and

1 data table match query

No description provided.