For the search of the chiral magnetic effect (CME), STAR previously presented the results from isobar collisions (${^{96}_{44}\text{Ru}}+{^{96}_{44}\text{Ru}}$, ${^{96}_{40}\text{Zr}}+{^{96}_{40}\text{Zr}}$) obtained through a blind analysis. The ratio of results in Ru+Ru to Zr+Zr collisions for the CME-sensitive charge-dependent azimuthal correlator ($\Delta\gamma$), normalized by elliptic anisotropy ($v_{2}$), was observed to be close to but systematically larger than the inverse multiplicity ratio. The background baseline for the isobar ratio, $Y = \frac{(\Delta\gamma/v_{2})^{\text{Ru}}}{(\Delta\gamma/v_{2})^{\text{Zr}}}$, is naively expected to be $\frac{(1/N)^{\text{Ru}}}{(1/N)^{\text{Zr}}}$; however, genuine two- and three-particle correlations are expected to alter it. We estimate the contributions to $Y$ from those correlations, utilizing both the isobar data and HIJING simulations. After including those contributions, we arrive at a final background baseline for $Y$, which is consistent with the isobar data. We extract an upper limit for the CME fraction in the $\Delta\gamma$ measurement of approximately $10\%$ at a $95\%$ confidence level on in isobar collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV, with an expected $15\%$ difference in their squared magnetic fields.
Figure 1a, upper panel, full-event
Figure 1a, lower panel, full-event
Figure 1b, upper panel, subevent
The chiral magnetic effect (CME) is a phenomenon that arises from the QCD anomaly in the presence of an external magnetic field. The experimental search for its evidence has been one of the key goals of the physics program of the Relativistic Heavy-Ion Collider. The STAR collaboration has previously presented the results of a blind analysis of isobar collisions (${^{96}_{44}\text{Ru}}+{^{96}_{44}\text{Ru}}$, ${^{96}_{40}\text{Zr}}+{^{96}_{40}\text{Zr}}$) in the search for the CME. The isobar ratio ($Y$) of CME-sensitive observable, charge separation scaled by elliptic anisotropy, is close to but systematically larger than the inverse multiplicity ratio, the naive background baseline. This indicates the potential existence of a CME signal and the presence of remaining nonflow background due to two- and three-particle correlations, which are different between the isobars. In this post-blind analysis, we estimate the contributions from those nonflow correlations as a background baseline to $Y$, utilizing the isobar data as well as Heavy Ion Jet Interaction Generator simulations. This baseline is found consistent with the isobar ratio measurement, and an upper limit of 10% at 95% confidence level is extracted for the CME fraction in the charge separation measurement in isobar collisions at $\sqrt{s_{\rm NN}}=200$ GeV.
Figure 1a
Figure 1b
Figure 1c
The deconfined quark-gluon plasma (QGP) created in relativistic heavy-ion collisions enables the exploration of the fundamental properties of matter under extreme conditions. Non-central collisions can produce strong magnetic fields on the order of $10^{18}$ Gauss, which offers a probe into the electrical conductivity of the QGP. In particular, quarks and anti-quarks carry opposite charges and receive contrary electromagnetic forces that alter their momenta. This phenomenon can be manifested in the collective motion of final-state particles, specifically in the rapidity-odd directed flow, denoted as $v_1(\mathsf{y})$. Here we present the charge-dependent measurements of $dv_1/d\mathsf{y}$ near midrapidities for $\pi^{\pm}$, $K^{\pm}$, and $p(\bar{p})$ in Au+Au and isobar ($_{44}^{96}$Ru+$_{44}^{96}$Ru and $_{40}^{96}$Zr+$_{40}^{96}$Zr) collisions at $\sqrt{s_{\rm NN}}=$ 200 GeV, and in Au+Au collisions at 27 GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The combined dependence of the $v_1$ signal on collision system, particle species, and collision centrality can be qualitatively and semi-quantitatively understood as several effects on constituent quarks. While the results in central events can be explained by the $u$ and $d$ quarks transported from initial-state nuclei, those in peripheral events reveal the impacts of the electromagnetic field on the QGP. Our data put valuable constraints on the electrical conductivity of the QGP in theoretical calculations.
Directed flow of $p$ and $\bar{p}$ vs rapidity in Au+Au 200 GeV 50-80% centrality.
Directed flow of $p$ and $\bar{p}$ vs rapidity in Zr+Zr and Ru+Ru 200 GeV (combined) 50-80% centrality.
Directed flow of $p$ and $\bar{p}$ vs rapidity in Au+Au 27 GeV 50-80% centrality.
We present direct photon-hadron correlations in 200 GeV/A Au+Au, d+Au, and p+p collisions, for direct photon pT from 5–12 GeV/c, collected by the PHENIX Collaboration in the years from 2006 to 2011. We observe no significant modification of jet fragmentation in d+Au collisions, indicating that cold nuclear matter effects are small or absent. Hadrons carrying a large fraction of the quark's momentum are suppressed in Au+Au compared to p+p and d+Au. As the momentum fraction decreases, the yield of hadrons in Au+Au increases to an excess over the yield in p+p collisions. The excess is at large angles and at low hadron pT and is most pronounced for hadrons associated with lower momentum direct photons. Comparison to theoretical calculations suggests that the hadron excess arises from medium response to energy deposited by jets.
Per-trigger yield of hadrons associated to direct photons in Au+Au collisions for direct photon $p_T$ 5-9 GeV/$c$, compared with p+p baseline, in various $\xi$ bins.
Per-trigger yield of hadrons associated to direct photons in d+Au collisions for direct photon $p_T$ 7-9 GeV/$c$, compared with p+p baseline, in various $\xi$ bins.
Integrated away-side $\gamma_{dir}$-h per-trigger yields of Au+Au, d+Au, and p+p, as a function of $\xi$.
The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been predicted for the transition to a deconfined phase. New measurements of NA61/SHINE find intriguing similarities in p+p interactions for which no deconfinement transition is expected at SPS energies. Possible implications will be discussed.
K+/PI+ at y=0.
K+/PI+ at y=0.
<K+>/<PI+>.
The PHENIX collaboration presents first measurements of low-momentum ($0.4
Direct photon spectra(Physical Review C87, 054907 (2013)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 200 GeV.
Direct photon spectra(Physics Letters B94, 106 (1980)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 62.4 GeV.
Direct photon spectra(Nucl. Part. Phys. 23, A1 (1997) and Sov. J. Nucl. Phys. 51, 836 (1990)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 63 GeV.
We have measured direct photons for $p_T<5~$GeV/$c$ in minimum bias and 0\%--40\% most central events at midrapidity for Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The $e^{+}e^{-}$ contribution from quasi-real direct virtual photons has been determined as an excess over the known hadronic contributions in the $e^{+}e^{-}$ mass distribution. A clear enhancement of photons over the binary scaled $p$$+$$p$ fit is observed for $p_T<4$ GeV/$c$ in Cu$+$Cu data. The $p_T$ spectra are consistent with the Au$+$Au data covering a similar number of participants. The inverse slopes of the exponential fits to the excess after subtraction of the $p$$+$$p$ baseline are 285$\pm$53(stat)$\pm$57(syst)~MeV/$c$ and 333$\pm$72(stat)$\pm$45(syst)~MeV/$c$ for minimum bias and 0\%--40\% most central events, respectively. The rapidity density, $dN/dy$, of photons demonstrates the same power law as a function of $dN_{\rm ch}/d\eta$ observed in Au$+$Au at the same collision energy.
Direct photon fraction measured with the virtual photon method for different systems in $\sqrt{s_{NN}}$ = 200 GeV Cu+Cu collisions.
The direct photon spectra for Minimum Bias and 0-40% centrality in $\sqrt{s_{NN}}$ = 200 GeV Cu+Cu collisions.
We present measurements of azimuthal correlations of charged hadron pairs in $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions after subtracting an underlying event using a model that includes higher-order azimuthal anisotropy $v_2$, $v_3$, and $v_4$. After subtraction, the away-side ($\Delta\phi\sim\pi)$ of the highest transverse-momentum trigger ($p_T>4$ GeV/$c$) correlations is suppressed compared to that of correlations measured in $p$$+$$p$ collisions. At the lowest associated particle $p_T$, the away-side shape and yield are modified. These observations are consistent with the scenario of radiative-jet energy loss. For the lowest-$p_T$ trigger correlations, an away-side yield exists and we explore the dependence of the shape of the away-side within the context of an underlying-event model. Correlations are also studied differentially versus event-plane angle $\Psi_n$. The angular correlations show an asymmetry when selecting the sign of the trigger-particle azimuthal angle with respect to the $\Psi_2$ event plane. This asymmetry and the measured suppression of the pair yield out of plane is consistent with a path-length-dependent energy loss. No $\Psi_3$ dependence can be resolved within experimental uncertainties.
Higher-order flow harmonics for charged hadrons at midrapidity in Au$+$Au collisions at $\sqrt{s_{NN}}$ and their systematics: $v_2$, $v_3$, $v_4$, and $v_4\{\Psi_2\}$. The source of systematic uncertainties are difference among RXN event-planes, matching cut width for CNT hadron tracks, and difference between $v_n$ measured with RXN and BBC event planes .
Per-trigger yields $Y(\Delta\phi)$ of dihadrons pairs measured in Au$+$Au collisions at$\sqrt{s_{NN}}$ after subtracting the underlying event model with several $p_T$ selections and centralities. Systematic uncertainties are due to track matching and the $v_n$ and due to ZYAM.
Per-trigger yields $Y(\Delta\phi)$ of dihadron pairs measured in Au$+$Au collisions after subtracting the underlying event-model with several $p_T$ selections of the trigger and associated particles ($p_T^{t,a}$ and several centralities. Systematic uncertainties are due to track matching and the $v_n$ and due to ZYAM.
We report a measurement of $e^+e^-$ pairs from semileptonic heavy-flavor decays in $p$+$p$ collisions at $\sqrt{s_{NN}}=200$~GeV. The $e^+e^-$ pair yield from $b\bar{b}$ and $c\bar{c}$ is separated by exploiting a double differential fit done simultaneously in dielectron invariant mass and $p_T$. We used three different event generators, {\sc pythia}, {\sc mc@nlo}, and {\sc powheg}, to simulate the $e^+e^-$ spectra from $c\bar{c}$ and $b\bar{b}$ production. The data can be well described by all three generators within the detector acceptance. However, when using the generators to extrapolate to $4\pi$, significant differences are observed for the total cross section. These difference are less pronounced for $b\bar{b}$ than for $c\bar{c}$. The same model dependence was observed in already published $d$+$A$ data. The $p$+$p$ data are also directly compared with $d$+$A$ data in mass and $p_T$, and within the statistical accuracy no nuclear modification is seen.
Step by step extrapolation from the number of $e^+e^-$ pairs for $m_{e^+e^-}$ > 1.16 GeV/$c^2$ from $c\bar{c}$ in the PHENIX acceptance to the number of $c\bar{c}$ pairs in 4$\pi$ for PYTHIA, MC@NLO, and POWHEG. Numbers are in units of pairs per event using the $c\bar{c}$ cross sections determined in this paper.
Step by step extrapolation from the number of $e^+e^-$ pairs for $m_{e^+e^-}$ > 1.16 GeV/$c^2$ from $b\bar{b}$ in the PHENIX acceptance to the number of $b\bar{b}$ pairs in 4$\pi$ for PYTHIA, MC@NLO, and POWHEG. Numbers are in units of pairs per event using the $b\bar{b}$ cross sections determined in this paper.
Summary of $c\bar{c}$ and $b\bar{b}$ cross sections measured in $p$+$p$ collisions using three different generators, PYTHIA, MC@NLO, and POWHEG.
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd and 3rd order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of $0.4
Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the conversion method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).
Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the calorimeter method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).