Date

Comprehensive analysis of local and nonlocal amplitudes in the $B^0\rightarrow K^{*0}\mu^+\mu^-$ decay

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
JHEP 09 (2024) 026, 2024.
Inspire Record 2795535 DOI 10.17182/hepdata.161096

A comprehensive study of the local and nonlocal amplitudes contributing to the decay $B^0\rightarrow K^{*0}(\to K^+\pi^-) \mu^+\mu^-$ is performed by analysing the phase-space distribution of the decay products. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 8.4fb$^{-1}$ collected by the LHCb experiment. This measurement employs for the first time a model of both one-particle and two-particle nonlocal amplitudes, and utilises the complete dimuon mass spectrum without any veto regions around the narrow charmonium resonances. In this way it is possible to explicitly isolate the local and nonlocal contributions and capture the interference between them. The results show that interference with nonlocal contributions, although larger than predicted, only has a minor impact on the Wilson Coefficients determined from the fit to the data. For the local contributions, the Wilson Coefficient $C_9$, responsible for vector dimuon currents, exhibits a $2.1\sigma$ deviation from the Standard Model expectation. The Wilson Coefficients $C_{10}$, $C_{9}'$ and $C_{10}'$ are all in better agreement than $C_{9}$ with the Standard Model and the global significance is at the level of $1.5\sigma$. The model used also accounts for nonlocal contributions from $B^{0}\to K^{*0}\left[\tau^+\tau^-\to \mu^+\mu^-\right]$ rescattering, resulting in the first direct measurement of the $b s\tau\tau$ vector effective-coupling $C_{9\tau}$.

0 data tables match query

Three-pion Bose-Einstein correlations measured in proton-proton collisions

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
JHEP 08 (2025) 174, 2025.
Inspire Record 2928684 DOI 10.17182/hepdata.160692

A study on the Bose-Einstein correlations for triplets of same-sign pions is presented. The analysis is performed using proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 7 TeV, recorded by the LHCb experiment, corresponding to an integrated luminosity of 1.0 fb$^{-1}$. For the first time, the results are interpreted in the core-halo model. The parameters of the model are determined in regions of charged-particle multiplicity. This measurement provides insight into the nature of hadronisation in terms of coherence, showing a coherent emission of pions.

0 data tables match query

First measurement of $b$-jet mass with and without grooming

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
Phys.Lett.B 869 (2025) 139854, 2025.
Inspire Record 2922449 DOI 10.17182/hepdata.159893

The LHCb collaboration presents a novel suite of heavy-flavour jet substructure measurements at forward rapidity in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The jet mass is a perturbatively calculable probe of the virtuality of hard-scattered quarks and gluons, connecting small-distance quantum chromodynamics (QCD) with long-distance experimental measurement. It becomes dominated by nonperturbative corrections at small values, presenting an excellent test of QCD across a broad range of energies. Measuring heavy-flavour jet mass with a theoretically unambiguous flavour definition for the first time probes the gluon splitting mechanism for heavy-flavour production and pushes tests of perturbative QCD to unprecedented theoretical precision. Utilising the soft drop jet-grooming technique to access the perturbative jet core further enhances constraints on first-principles theory. Measurements of the jet mass for jets containing fully reconstructed $B^\pm$ hadrons are reported with and without grooming. These results offer unparalleled tests of quark flavour and mass dependence in QCD and provide a baseline for future studies of heavy-flavour jet quenching in heavy-ion collisions.

0 data tables match query

Version 2
Measurement of top quark pair production in association with a Z boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2020) 056, 2020.
Inspire Record 1746445 DOI 10.17182/hepdata.91636

A measurement of the inclusive cross section of top quark pair production in association with a Z boson using proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC is performed. The data sample corresponds to an integrated luminosity of 77.5 fb$^{-1}$, collected by the CMS experiment during 2016 and 2017. The measurement is performed using final states containing three or four charged leptons (electrons or muons), and the Z boson is detected through its decay to an oppositely charged lepton pair. The production cross section is measured to be $\sigma(\mathrm{t\bar{t}Z})$ $=$ 0.95 $\pm$ 0.05 (stat) $\pm$ 0.06 (syst) pb. For the first time, differential cross sections are measured as functions of the transverse momentum of the Z boson and the angular distribution of the negatively charged lepton from the Z boson decay. The most stringent direct limits to date on the anomalous couplings of the top quark to the Z boson are presented, including constraints on the Wilson coefficients in the framework of the standard model effective field theory.

0 data tables match query

Nuclear modification of $\Upsilon$ states in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
Phys.Lett.B 835 (2022) 137397, 2022.
Inspire Record 2037640 DOI 10.17182/hepdata.88291

Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into $\mu^+\mu^-$ in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for $\Upsilon$(1S) is found to be $R_\mathrm{pPb}(\Upsilon(1S))$ = 0.806 $\pm$ 0.024 (stat) $\pm$ 0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that $R_\mathrm{pPb}(\Upsilon(1S))$$\gt$$R_\mathrm{pPb}(\Upsilon(2S))$$\gt$$R_\mathrm{pPb}(\Upsilon(3S))$. The suppression is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum $p_\mathrm{T}^\Upsilon$ and center-of-mass rapidity $y_\mathrm{CM}^\Upsilon$ of the individual $\Upsilon$ state in the studied range $p_\mathrm{T}^\Upsilon$$\lt$ 30 GeV$/c$ and $\vert y_\mathrm{CM}^\Upsilon\vert$$\lt$ 1.93. Models that incorporate sequential suppression of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.

0 data tables match query

Spectra and mean multiplicities of $\pi^{-}$ in $central$ ${}^{40}$Ar+${}^{45}$Sc collisions at 13$A$, 19$A$, 30$A$, 40$A$, 75$A$ and 150$A$ GeV/$c$ beam momenta measured by the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Acharya, A. ; Adhikary, H. ; Allison, K.K. ; et al.
Eur.Phys.J.C 81 (2021) 397, 2021.
Inspire Record 1842132 DOI 10.17182/hepdata.127193

The physics goal of the strong interaction program of the NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS) is to study the phase diagram of hadronic matter by a scan of particle production in collisions of nuclei with various sizes at a set of energies covering the SPS energy range. This paper presents differential inclusive spectra of transverse momentum, transverse mass and rapidity of $\pi^{-}$ mesons produced in $central$ ${}^{40}$Ar+${}^{45}$Sc collisions at beam momenta of 13$A$, 19$A$, 30$A$, 40$A$, 75$A$ and 150$A$ GeV/$c$. Energy and system size dependence of parameters of these distributions -- mean transverse mass, the inverse slope parameter of transverse mass spectra, width of the rapidity distribution and mean multiplicity -- are presented and discussed. Furthermore, the dependence of the ratio of the mean number of produced pions to the mean number of wounded nucleons on the collision energy was derived. The results are compared to predictions of several models.

0 data tables match query

Measurements of $\pi^\pm$, $K^\pm$, $p$ and $\bar{p}$ spectra in $^{40}$Ar+$^{45}$Sc collisions at 13$A$ to 150$A$ GeV/$c$

The NA61/SHINE collaboration Adhikary, H. ; Adrich, P. ; Allison, K.K. ; et al.
Eur.Phys.J.C 84 (2024) 416, 2024.
Inspire Record 2692441 DOI 10.17182/hepdata.151277

The NA61/SHINE experiment at the CERN Super Proton Synchrotron studies the onset of deconfinement in strongly interacting matter through a beam energy scan of particle production in collisions of nuclei of varied sizes. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of $\pi^\pm$, $K^\pm$, $p$ and $\bar{p}$ produced in $^{40}$Ar+$^{45}$Sc collisions at beam momenta of 13$A$, 19$A$, 30$A$, 40$A$, 75$A$ and 150$A$~\GeVc. The analysis uses the 10% most central collisions, where the observed forward energy defines centrality. The energy dependence of the $K^\pm$/$\pi^\pm$ ratios as well as of inverse slope parameters of the $K^\pm$ transverse mass distributions are placed in between those found in inelastic $p$+$p$ and central Pb+Pb collisions. The results obtained here establish a system-size dependence of hadron production properties that so far cannot be explained either within statistical or dynamical models.

0 data tables match query

Version 2
Evidence of isospin-symmetry violation in high-energy collisions of atomic nuclei

The NA61/SHINE collaboration Adhikary, H. ; Adrich, P. ; Allison, K.K. ; et al.
Nature Commun. 16 (2025) 2849, 2025.
Inspire Record 2734683 DOI 10.17182/hepdata.156978

Strong interactions preserve an approximate isospin symmetry between up ($u$) and down ($d$) quarks, part of the more general flavor symmetry. In the case of $K$ meson production, if this isospin symmetry were exact, it would result in equal numbers of charged ($K^+$ and $K^-$) and neutral ($K^0$ and $\overline K^{\,0}$) mesons in the final state. Here, we report results on the relative abundance of charged over neutral $K$ meson production in argon and scandium nuclei collisions at a center-of-mass energy of 11.9 GeV per nucleon pair. We find that the production of $K^+$ and $K^-$ mesons at mid-rapidity is $(18.4\pm 6.1)\%$ higher than that of the neutral $K$ mesons. Although with large uncertainties, earlier data on nucleus-nucleus collisions in the collision center-of-mass energy range $2.6 < \sqrt{s_{NN}} < 200$~\GeV are consistent with the present result. Using well-established models for hadron production, we demonstrate that known isospin-symmetry breaking effects and the initial nuclei containing more neutrons than protons lead only to a small (few percent) deviation of the charged-to-neutral kaon ratio from unity at high energies. Thus, they cannot explain the measurements. The significance of the flavor-symmetry violation beyond the known effects is 4.7$\sigma$ when the compilation of world data with uncertainties quoted by the experiments is used. New systematic, high-precision measurements and theoretical efforts are needed to establish the origin of the observed large isospin-symmetry breaking.

0 data tables match query

Beam Asymmetry $\mathbf{\Sigma}$ for the Photoproduction of $\mathbf{\eta}$ and $\mathbf{\eta^{\prime}}$ Mesons at $\mathbf{E_{\gamma}=8.8}$GeV

The GlueX collaboration Adhikari, S. ; Ali, A. ; Amaryan, M. ; et al.
Phys.Rev.C 100 (2019) 052201, 2019.
Inspire Record 1749712 DOI 10.17182/hepdata.110166

We report on the measurement of the beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\rightarrow p\eta$ and $\vec{\gamma}p \rightarrow p\eta^{\prime}$ from the GlueX experiment, using an 8.2--8.8 GeV linearly polarized tagged photon beam incident on a liquid hydrogen target in Hall D at Jefferson Lab. These measurements are made as a function of momentum transfer $-t$, with significantly higher statistical precision than our earlier $\eta$ measurements, and are the first measurements of $\eta^{\prime}$ in this energy range. We compare the results to theoretical predictions based on $t$--channel quasi-particle exchange. We also compare the ratio of $\Sigma_{\eta}$ to $\Sigma_{\eta^{\prime}}$ to these models, as this ratio is predicted to be sensitive to the amount of $s\bar{s}$ exchange in the production. We find that photoproduction of both $\eta$ and $\eta^{\prime}$ is dominated by natural parity exchange with little dependence on $-t$.

0 data tables match query

Measurement of the $e^+e^- \to\pi^+\pi^- $ process cross section with the SND detector at the VEPP-2000 collider in the energy region $0.525<\sqrt{s}<0.883$ GeV

The SND collaboration Achasov, M.N. ; Baykov, A.A. ; Barnyakov, A.Yu. ; et al.
JHEP 01 (2021) 113, 2021.
Inspire Record 1789269 DOI 10.17182/hepdata.114983

The cross section of the process $e^+ e^-\to\pi^+\pi^-$ has been measured in the Spherical Neutral Detector (SND) experiment at the VEPP-2000 $e^+e^-$ collider VEPP-2000 in the energy region $525 <\sqrt[]{s} <883$ MeV. The measurement is based on data with an integrated luminosity of about 4.6 pb$^{-1}$. The systematic uncertainty of the cross section determination is 0.8 % at $\sqrt{s}>0.600$ GeV. The $\rho$ meson parameters are obtained as $m_\rho = 775.3\pm 0.5\pm 0.6$ MeV, $\Gamma_\rho = 145.6\pm 0.6\pm 0.8$ MeV, $B_{\rho\to e^+ e^-}\times B_{\rho\to\pi^+\pi^-} = (4.89\pm 0.02\pm 0.04)\times 10^{-5}$, and the parameters of the $e^+ e^-\to\omega\to\pi^+\pi^-$ process, suppressed by $G$-parity, as $B_{\omega\to e^+ e^-}\times B_{\omega\to\pi^+\pi^-}= (1.32\pm 0.06\pm 0.02)\times 10^{-6} $ and $\phi_{\rho\omega} = 110.7\pm 1.5\pm1.0$ degrees.

0 data tables match query