The modulus and the phase of the K L o −K S o regeneration amplitude on carbon have been measured. In a momentum range of 16–40 GeV/ c the phase is constant within experimental error bars and coincides with the regeneration phase on hydrogen. Both the modulus and the phase of the regeneration amplitude on carbon are in agreement with optical model predictions.
ASSUMING A CONSTANT PHASE INDEPENDENT OF MOMENTUM, THE CARBON REGENERATION AMPLITUDE HAS A PHASE OF -130 +- 17 DEG.
Results are presented for the quasi two-body hypercharge exchange reactions of the type using data from a high statistics bubble chamber experiment. Total and differential cross sections and the momentum transfer dependence of the meson and hyperon resonance single density matrix elements are discussed. Amplitude analyses are performed for the first two reactions. The results are compared with quark model and duality predictions and with those from other related reactions.
No description provided.
No description provided.
No description provided.
Transversity amplitudes and spin density matrix elements are determined for the process K − p → (π + π − ) s-wave ϵ 0 (1385). Predictions of the additive quark model and of duality diagrams are tested and found consistent with the data; this is the first information about the applicability of these models to processes where a scalar object is produced at the mesonic vertex.
No description provided.
The reactions K − p→ π − Σ + (1385) and K − p→ π + Σ − (1385) are studied at 4.2 GeV c incident momentum using data from a high statistics bubble chamber experiment corresponding to ∼80 events/μb. The total and differential cross sections are presented. Amplitude analyses are performed and the complete Σ ± (1385) helicity spin density matrices are extracted. The results are compared with the predictions of the additive quark model and exchange degeneracy. A substantial cross section is observed for the reaction K − p→ π + Σ − (1385) in the forward direction, which implies exotic meson quantum numbers in the t -channel. One possible interpretation of this process provides an explanation for the small but significant violations of the additive quark model predictions observed in the reaction K − p→ π − Σ + (1385) at low four-momentum transfer. In the backward direction unnatural parity exchange is shown to give a larger contribution to K − p→ Σ − (1385) π + than natural parity exchange.
Axis error includes +- 5/5 contribution.
Axis error includes +- 5/5 contribution.
Axis error includes +- 5/5 contribution.
The vector meson production, hypercharge exchange reactions K − p → ( φ , ω , ϱ ) Λ and ( φ , ϱ ) Σ 0 are studied at 4.2 GeV/ c incident momentum. The data come from a high statistics bubble chamber experiment with a sensitivity of ∼ 120 events/μb. Total and differential cross sections are presented. The vector meson density matrix elements and hyperon polarization are investigated as functions of momentum transfer. Amplitude analyses are performed for all five reactions. The results are compared with duality and quark model predictions, as well as used to test current ideas in two-body phenomenology.
ERRORS INCLUDE THE 5 PCT MODEL ERROR BUT NOT THEORETICAL RESONANCE PARAMETRIZATION ERRORS.
No description provided.
No description provided.
The energy dependence of the K L 0 -K S 0 transmission regeneration amplitudes on deuterons and neutrons in the momentum region 10–50 GeV/ c is determined. The moduli of the modified transmission amplitudes are momentum dependent. These dependences are fitted by the expression A j p − nj , where A j and n j ( j = d, n) are constants: A d =2.88 ±0.04 mb , n d =0.546±0.030, for deuterons , A n =1.97 ±0.14 mb , n n =0.530±0.019, for neutrons , The amplitude phases do not depend on the kaon momentum and are equal to ϕ d = (−130.9 ± 2.7)° ϕ n = (−132.3 ± 1.7)°. The mean value of the ratio of the total cross-section differences for K 0 and K 0 interactions with neutrons and protons is determined. The residues of the partial ω and ϱ amplitudes, which contribute to the kaon-nucleon interaction amplitudes, are also obtained.
FORWARD CROSS SECTION, AMPLITUDE AND PHASE FOR K0 REGENERATION.
(AK0 - K0) TOTAL CROSS SECTION DIFFERENCES.
The reactionsK−p→π∓Σ(1385)± are studied at an incident laboratory momentum of 8.25 GeV/c using data from a high statistics (≃180 events/μb) bubble chamber experiment. In the case of the reactionK−p→π−Σ(1385)+ an amplitude analysis is performed and the complete Σ(1385)+ spin density matrix is extracted as a function oft′. The results are compared with the predictions of the additive quark model. In the case of the reactionK−p→π+Σ(1385)− the cross-sections for forward and backward production are determined.
No description provided.
No description provided.
No description provided.
In an experiment carried out at the CERN Proton Synchrotron and using the CERN polarized deuteron target, the reaction π+n↑→π+π−p has been measured in the region -t=0.1–1.0 (GeV/c)2 and m(π+π−)=0.36–1.04 GeV at incident momenta of 5.98 and 11.85 GeV/c. We present the m and t dependence of the measured 14 linearly independent spin-density-matrix elements and of the bounds on the moduli squared of the S- and P-wave recoil transversity amplitudes. The results show the presence of ‘‘A1’’ exchange in the unnatural nucleon-helicity-nonflip amplitudes. The natural ‘‘A2’’-exchange amplitudes dominate at large t. In the range 0.2≤-t≤0.4 (GeV/c)2 the mass dependence shows that the unnatural exchange amplitudes with transversity ‘‘down’’ are generally larger than those with transversity ‘‘up.’’ The opposite is true for the natural exchange. In this range of t and at the ρ0 mass, the P-wave unnatural amplitudes with both transversities contribute in equal amounts while the production by natural exchange proceeds entirely with transversity up. We observe rapid changes of the moduli within the ρ0 mass range and variations of the width and the position of the ρ0 peak in spin-averaged partial-wave cross sections. These structures have not been seen in previous polarization experiments and reveal spin dependence of ρ0 production. Our bounds cannot exclude an S-wave resonance in the range 700–800 MeV. The results emphasize the need for a better experimental and theoretical understanding of the mass dependence of the production mechanism.
No description provided.
'Y' components of RHO.
'X' components of RHO.
The first measurement of incoherent η-photoproduction from the deuteron in the threshold region is reported. The experiment was carried out at the MAMI accelerator with the TAPS spectrometer. Total and differential inclusive cross sections have been obtained between 627 and 790 MeV. It is found that the reaction is completely dominated by the incoherent part. An upper limit for coherent η-photoproduction on the deuteron is deduced, which is substantially lower than the result from an earlier measurement. The incoherent cross section is reproduced in a participant-spectator approach under the assumption of an energy-independent ratio between the neutron and proton cross sections. Best agreement is found for the ratio σ n σ p ≈ 2 3 . The implications for the isospin components of the electromagnetic excitation of the S 11 (1535) resonance are discussed.
The helicity amplitudes A(1/2) = <S11|j(em)|nucleon> are measured.
The cross section and tensor analysing power t_20 of the d\vec{d}->eta 4He reaction have been measured at six c.m. momenta, 10 < p(eta) < 90 MeV/c. The threshold value of t_20 is consistent with 1/\sqrt{2}, which follows from parity conservation and Bose symmetry. The much slower momentum variation observed for the reaction amplitude, as compared to that for the analogous pd->eta 3He case, suggests strongly the existence of a quasi-bound state in the eta-4He system and optical model fits indicate that this probably also the case for eta-3He.
The spin-averaged amplitude squared is defined as follows: ABS(AMP)**2 = (P_deut/P_eta)*D(SIG)/D(OMEGA) and obtained by assuming the angular distributions to be isotropic. The errors in this quantity includes a contribution from Delta(P_eta). The statistical error of about 2% are added quadratically to the systemat ic error.