A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to determine the spin correlation parameter Aoosk and the rescattering observablesKos″ so; Dos″ok, Nos″sn, andNonsk at 1.80 and 2.10 GeV. The beam polarization was oriented perpendicular to the beam direction in the horizontal scattering plane and the target polarization was directed either along the vertical axis or longitudinally. Left-right and up-down asymmetries in the second scattering were measured. A check for the beam optimization with the beam and target polarizations oriented vertically provided other observables, of which results forDonon andKonno at 1.80, 1.85, 2.04, and 2.10 GeV are listed here. The new data at 2.10 GeV suggest a smooth energy dependence of spin triplet scattering amplitudes at fixed angles in the vicinity of this energy.
Spin correlation parameter CSL measured with the beam polarisation measuredalong the +-S direction and the target polarisation along the +-L axis. Additional 4.3 PCT systematic normalisation uncertainty.
Measurement of the rescattering parameter KSS with the beam polarisation inthe +- S direction. Additional 6.7 PCT systematic error.
Measurement of the rescattering parameter KSS with the beam polarisation inthe +- S direction. Additional 6.7 PCT systematic error.
Polarization transfer observables in π + d elastic scattering have been measured for the first time. Four polarization transfer parameters were determined at pion energies T π =134 MeV and 180 MeV at scattering angles θ π ,C.M. between 100° and 140° using a deuteron target polarized perpendicular to the scattering plane and a deuteron tensor polarimeter. The data are compared to different predictions from the SAID phase shift analysis and Faddeev calculations.
Systematic and statistical errors are added in quadrature.
Systematic and statistical errors are added in quadrature.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Surprisingly large polarizations in hyperon production by unpolarized protons have been known for a long time. The spin dynamics of the production process can be further investigated with polarized beams. Recently, a negative asymmetry AN was found in inclusive Λ0 production with a 200GeV/c transversely polarized proton beam. The depolarization DNN in p↑+p→Λ0+X has been measured with the same beam over a wide xF range and at moderate pT. DNN reaches positive values of about 30% at high xF and pT∼1.0GeV/c. This result shows a sizable spin transfer from the incident polarized proton to the outgoing Λ0.
Errors are statistical only. The systematic errors are estimated to be negligible.
Errors are statistical only. The systematic errors are estimated to be negligible.
Errors are statistical only. The systematic errors are estimated to be negligible.
The highest-energy measurement of ΔσL(pp) and the first ever measurement of ΔσL(p¯p), the differences between proton-proton and antiproton-proton total cross sections for pure longitudinal spin states, are described. Data were taken using 200-GeV/c polarized beams incident on a polarized-proton target. The results are measured to be ΔσL(pp)=−42±48(stat)±53(syst) μb and ΔσL(p¯p)=−256±124(stat)±109(syst) μb. Many tests of systematic effects were investigated and are described, and a comparison to theoretical predictions is also given. Measurements of parity nonconservation at 200 GeV/c in proton scattering and the first ever of antiproton scattering have also been derived from these data. The values are consistent with zero at the 10−5 level.
No description provided.
No description provided.
Interest in the production of hyperon-antihyperon pairs following antiproton-proton annihilation stems largely from attempts to understand the nature of flavor production. To date the major focus of both the experimental and the theoretical effort has been on the p¯p→Λ¯Λ reaction. In this paper, we present data on the complementary channels p¯p→Σ¯0Λ and p¯p→Λ¯Σ0. Events from the kinematically similar p¯p→Λ¯Λ reaction were obtained in parallel. The procedure to distinguish these three separate reactions is described and results for all channels are presented. These include the total and differential cross sections, hyperon polarizations, and spin correlation coefficients. Data were obtained at incident antiproton lab momenta of 1.726 and 1.771 GeV/c which correspond to excess kinetic energies in the p¯p→Λ¯Σ0+c.c. reaction of 26 and 40 MeV, respectively, above threshold. Comparisons are made to earlier work at similar excess energies in the p¯p→Λ¯Λ channel. The low-energy regime has been highlighted in this experiment to reduce the complexity in the theoretical analysis. © 1996 The American Physical Society.
No description provided.
Axis error includes +- 2.3/2.3 contribution.
Axis error includes +- 2.3/2.3 contribution.
The spin-transfer parameter K n 00 n of the p p↑ → n ↑n charge exchange reaction has been measured for the first time at the CERN Low Energy Antiproton Ring (LEAR), at 875 MeV/ c p momentum, in the centre-of-mass scattering-angle range from 45° to 78°. To measure the transverse polarisation of the n 's, a thick scintillator counter hodoscope was used as live target, and the elastic n p scattering on the hydrogen of the scintillator was used as analysing reaction of the n transverse polarisation. Its so far unmeasured analysing power is taken as linear in momentum transfer, A n p = α·q , and results are given for α · K n 00 n . The values one obtains for K n 00 n , estimating α from N N potential models, are less than 0.25, in agreement with the predictions.
Polarized beam. CONST is overall normalization unknown factor.
No description provided.
Measurements are presented for several mixtures of the spin observables CSS,CSL=CLS, CLL, and CNN for neutron-proton elastic scattering. These data were obtained with a free polarized neutron beam, a polarized proton target, and a large magnetic spectrometer for the outgoing proton. The neutron beam kinetic energies were 484, 567, 634, 720, and 788 MeV. Combining these results with earlier measurements allows the determination of the pure spin observables CSS, CLS, and CLL at 484, 634, and 788 MeV for c.m. angles 25°≤θc.m.≤180° and at 720 MeV for 35°≤θc.m.≤80°. These data make a significant contribution to the knowledge of the isospin-0 nucleon-nucleon scattering amplitudes. © 1996 The American Physical Society.
Results for the pure spin observables. Statistical errors only. (Data for CSS and CNN at (172.5 to 177.5) and (167.5 to 172.5) degrees are uncertain because of the rapid angular dependence and possible errors in angle, and may be omitted from phase shift analyses.) The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.
Results for the pure spin observables. Statistical errors only. (Data for CSS and CNN at (172.5 to 177.5) and (167.5 to 172.5) degrees are uncertain because of the rapid angular dependence and possible errors in angle, and may be omitted from phase shift analyses.) The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.
Results for the pure spin observables. Statistical errors only. The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.
The depolarization parameter Donon of the p dash p → n dash n charge exchange reaction has been measured for the first time at the CERN Low Energy Antiproton Ring (LEAR) at two antiproton momenta, 546 and 875 MeV/ c . The transverse polarization of the recoil neutron was analyzed using a large-acceptance neutron polarimeter made up of two parallel plastic scintillator planes. D 0 n 0 n is usually less than 0.35 which suggests that the spin-spin amplitudes dominate in the scattering matrix. Results are compared with the predictions of various N dash N potential models. The agreement is in general satisfactory.
No description provided.
No description provided.
A measurement of ΔσL(np), the difference between neutron-proton total cross sections for pure longitudinal spin states, is described. Data were taken at LAMPF for five neutron beam kinetic energies: 484, 568, 634, 720, and 788 MeV. The statistical errors are in the range of 0.64–1.35 mb. Various sources of systematic effects were investigated and are described. Overall systematic errors are estimated to be on the order of 0.5 mb and include an estimate for the uncertainty in the neutron beam polarization. The ΔσL results are consistent with previous results from PSI and Saclay. These data, when combined with other results and fitted to a Breit-Wigner curve, are consistent with an elastic I=0 resonance with mass 2214±15 (stat) ±6 (syst) MeV and width 75±21±12 MeV. Because of a lack of ΔσT(np) data between 500 and 800 MeV, it is not possible to differentiate between a singlet or coupled-triplet partial wave being responsible.
No description provided.
The (I=0) part of SIG(NAME=CLL) after subtraction of the p p data, (I=1) part.