Version 2
Forward jet and particle production at HERA

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 538 (1999) 3-22, 1999.
Inspire Record 476801 DOI 10.17182/hepdata.44172

Single particles and jets in deeply inelastic scattering at low x are measured with the H1 detector in the region away from the current jet and towards the proton remnant, known as the forward region. Hadronic final state measurements in this region are expected to be particularly sensitive to QCD evolution effects. Jet cross-sections are presented as a function of Bjorken-x for forward jets produced with a polar angle to the proton direction, theta, in the range 7 < theta < 20 degrees. Azimuthal correlations are studied between the forward jet and the scattered lepton. Charged and neutral single particle production in the forward region are measured as a function of Bjorken-x, in the range 5 < theta < 25 degrees, for particle transverse momenta larger than 1 GeV. QCD based Monte Carlo predictions and analytical calculations based on BFKL, CCFM and DGLAP evolution are compared to the data. Predictions based on the DGLAP approach fail to describe the data, except for those which allow for a resolved photon contribution.

11 data tables match query

Forward Jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Forward Di-jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Data from Figure 3a on charged particle production

More…

Measurement of charm and beauty dijet cross sections in photoproduction at HERA using the H1 vertex detector.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 47 (2006) 597-610, 2006.
Inspire Record 716144 DOI 10.17182/hepdata.45700

A measurement of charm and beauty dijet photoproduction cross sections at the ep collider HERA is presented. Events are selected with two or more jets of transverse momentum $p_t^{jet}_{1(2)}>11(8)$ GeV in the central range of pseudo-rapidity $-0.9<\eta^{jet}_{1(2)}<1.3$. The fractions of events containing charm and beauty quarks are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 central vertex detector. Differential dijet cross sections for charm and beauty, and their relative contributions to the flavour inclusive dijet photoproduction cross section, are measured as a function of the transverse momentum of the leading jet, the average pseudo-rapidity of the two jets and the observable $x_{\gamma}^{obs}$. Taking into account the theoretical uncertainties, the charm cross sections are consistent with a QCD calculation in next-to-leading order, while the predicted cross sections for beauty production are somewhat lower than the measurement.

1 data table match query

Ratio of BOTTOM to inclusive cross sections.


Version 2
Production of D*+- mesons with dijets in deep-inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 51 (2007) 271-287, 2007.
Inspire Record 736052 DOI 10.17182/hepdata.45686

Inclusive D* production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D* meson is investigated. The analysis covers values of photon virtuality 2< Q^2 <=100 GeV^2 and of inelasticity 0.05<= y <= 0.7. Differential cross sections are measured as a function of Q^2 and x and of various D* meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k_T-unintegrated gluon distribution of the proton.

2 data tables match query

Differential cross section for D*+- production with dijets as a function of M(C=JET2).

Differential cross section for D*+- production with dijets as a function of M(C=JET2).


Comparison of Inclusive Fractional Momentum Distributions of Quark and Gluon Jets Produced in $e^+ e^-$ Annihilation

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 45 (1989) 1, 1989.
Inspire Record 277210 DOI 10.17182/hepdata.15299

Inclusive charged particle production ine+e− annihilation into hadrons is studied in terms of the particle fractional momentumxp. Thexp distribution for gluon jets is extracted by comparing two data samples measured in the TASSO detector: nearly symmetric three jet events at centre-of-mass energyW∼35 GeV and two jet events atW∼22 GeV, yielding quark and gluon jets of similar energies (∼11.5 GeV). No significant difference is observed between quark and gluon jets. Monte Carlo models based on parton showers describe the trend and energy variation of the data better than a model with second order matrix element in αs.

1 data table match query

3 JET data at sqrt(s) = 22 GeV.


Diffractive jet production in deep inelastic e+ p collisions at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 20 (2001) 29-49, 2001.
Inspire Record 539087 DOI 10.17182/hepdata.46939

A measurement is presented of dijet and 3-jet cross sections in low-|t| diffractive deep-inelastic scattering interactions of the type ep -> eXY, where the system X is separated by a large rapidity gap from a low-mass baryonic system Y. Data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 18.0 pb^(-1), are used to measure hadron level single and double differential cross sections for 4<Q^2<80 GeV^2, x_pom<0.05 and p_(T,jet)>4 GeV. The energy flow not attributed to jets is also investigated. The measurements are consistent with a factorising diffractive exchange with trajectory intercept close to 1.2 and tightly constrain the dominating diffractive gluon distribution. Viewed in terms of the diffractive scattering of partonic fluctuations of the photon, the data require the dominance of qqbarg over qqbar states. Soft colour neutralisation models in their present form cannot simultaneously reproduce the shapes and the normalisations of the differential cross sections. Models based on 2-gluon exchange are able to reproduce the shapes of the cross sections at low x_pom values.

1 data table match query

Average values, over the specified interval, of the differential hadron level dijet cross section as a function of PT(NAME=REM,C=POMERON), the PT sum of all final state hadrons in the pomeron hemisphere (ETARAP>0) which lie outside the two hightest PT(RF=CM) jet cones.


Multijet production at low x(Bj) in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 786 (2007) 152-180, 2007.
Inspire Record 750515 DOI 10.17182/hepdata.45528

Inclusive dijet and trijet production in deep inelastic $ep$ scattering has been measured for $10&lt;Q^2&lt;100$ GeV$^2$ and low Bjorken $x$, $10^{-4}&lt;x_{\rm Bj}&lt;10^{-2}$. The data were taken at the HERA $ep$ collider with centre-of-mass energy $\sqrt{s} = 318 \gev$ using the ZEUS detector and correspond to an integrated luminosity of $82 {\rm pb}^{-1}$. Jets were identified in the hadronic centre-of-mass (HCM) frame using the $k_{T}$ cluster algorithm in the longitudinally invariant inclusive mode. Measurements of dijet and trijet differential cross sections are presented as functions of $Q^2$, $x_{\rm Bj}$, jet transverse energy, and jet pseudorapidity. As a further examination of low-$x_{\rm Bj}$ dynamics, multi-differential cross sections as functions of the jet correlations in transverse momenta, azimuthal angles, and pseudorapidity are also presented. Calculations at $\mathcal{O}(\alpha_{s}^3)$ generally describe the trijet data well and improve the description of the dijet data compared to the calculation at $\mathcal{O}(\alpha_{s}^2)$.

1 data table match query

Two jet cross section D2(SIG)/DABS((PT(P=4,RF=CM)-PT(P=5,RF=CM))/2*ET(P=4,RF=CM))/DX as a function of ABS(PT(P=4,RF=CM)-PT(P=5,RF=CM))/2*ET(P=4,RF=CM).


Inclusive jet cross sections and dijet correlations in D*+- photoproduction at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 729 (2005) 492-525, 2005.
Inspire Record 687943 DOI 10.17182/hepdata.46048

Inclusive jet cross sections in photoproduction for events containing a $D^*$ meson have been measured with the ZEUS detector at HERA using an integrated luminosity of $78.6 {\rm pb}^{-1}$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$, and a photon-proton centre-of-mass energy in the range $130&lt;W_{\gamma p}&lt;280 {\rm GeV}$. The measurements are compared with next-to-leading-order (NLO) QCD calculations. Good agreement is found with the NLO calculations over most of the measured kinematic region. Requiring a second jet in the event allowed a more detailed comparison with QCD calculations. The measured dijet cross sections are also compared to Monte Carlo (MC) models which incorporate leading-order matrix elements followed by parton showers and hadronisation. The NLO QCD predictions are in general agreement with the data although differences have been isolated to regions where contributions from higher orders are expected to be significant. The MC models give a better description than the NLO predictions of the shape of the measured cross sections.

1 data table match query

The dijet cross section as a function of the PHI angle difference in JET1 and JET2 for events containing at least one D* meson in different XOBS(C=GAMMA) regions.


Substructure dependence of jet cross sections at HERA and determination of alpha(s).

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Loizides, J.H. ; et al.
Nucl.Phys.B 700 (2004) 3-50, 2004.
Inspire Record 650732 DOI 10.17182/hepdata.46136

Jet substructure and differential cross sections for jets produced in the photoproduction and deep inelastic ep scattering regimes have been measured with the ZEUS detector at HERA using an integrated luminosity of 82.2 pb-1. The substructure of jets has been studied in terms of the jet shape and subjet multiplicity for jets with transverse energies Et(jet) > 17 GeV. The data are well described by the QCD calculations. The jet shape and subjet multiplicity are used to tag gluon- and quark-initiated jets. Jet cross sections as functions of Et(jet), jet pseudorapidity, the jet-jet scattering angle, dijet invariant mass and the fraction of the photon energy carried by the dijet system are presented for gluon- and quark-tagged jets. The data exhibit the behaviour expected from the underlying parton dynamics. A value of alphas(Mz) of alphas(Mz) = 0.1176 +-0.0009(stat.) -0.0026 +0.0009 (exp.) -0.0072 +0.0091 (th.) was extracted from the measurements of jet shapes in deep inelastic scattering.

1 data table match query

Measured differential cross section DSIG/DETARAP for inclusive jet production in DIS with ET(C=JET) > 17 GeV. Jets are divided into BROAD and NARROW jets according to their shape.


Dijet photoproduction at HERA and the structure of the photon.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 23 (2002) 615-631, 2002.
Inspire Record 568665 DOI 10.17182/hepdata.46761

The dijet cross section in photoproduction has been measured with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb$^{-1}$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$ and a photon-proton centre-of-mass energy in the range $134 < W_{\gamma p} < 277$ GeV. Each event contains at least two jets satisfying transverse-energy requirements of $E_{T}^{\rm jet1}>14$ GeV and $E_{T}^{\rm jet2}>11$ GeV and pseudorapidity requirements of $-1<\eta^{\rm jet1,2}<2.4$. The measurements are compared to next-to-leading-order QCD predictions. The data show particular sensitivity to the density of partons in the photon, allowing the validity of the current parameterisations to be tested.

1 data table match query

No description provided.


QCD studies with e+ e- annihilation data at 161-GeV.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 75 (1997) 193-207, 1997.
Inspire Record 440721 DOI 10.17182/hepdata.47487

We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.

1 data table match query

PTOUT distribution.