This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP1 data sample comprising 161 pb^-1 of integrated luminosity and 4.5 x 10^6 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from Z-gamma interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mZ = 91.1852 +- 0.0030 GeV, GZ = 2.4948 +- 0.0041 GeV, s0h = 41.501 +- 0.055 nb, Rl = 20.823 +- 0.044, and Afb0l = 0.0145 +- 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Ginv/Gl = 5.942 +- 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, N_nu = 2.984 +- 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = 162 +29-16 GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: alfa_s(mZ) = 0.127 +- 0.005 and mH = 390 +750-280 GeV.
The cross section for hadron production corrected to the simple kinematic acceptance region defined by SPRIME/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).
The cross section for E+ E- production corrected to the simple kinematic acceptance region defined by ABS(COS(THETA(C=E-))) < 0.7 and THETA(C=ACOL) < 10 degrees. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross sectionat the central value of SQRT(S).
The cross section for mu+ mu- production corrected to the simple kinematic acceptance region defined by N = M(P=3_4)**2/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).
The production of c and b quarks in gamma-gamma collisions is studied with the L3 detector at LEP with 410 pb^-1 of data, collected at centre-of-mass energies from 189 GeV to 202 GeV. Hadronic final states containing c and b quarks are identified by detecting electrons or muons from their semileptonic decays. The cross sections sigma(e+e- -> e+e- c c~ X) and sigma(e+e- -> e+e- b b~ X) are measured and compared to next-to-leading order perturbative QCD calculations. The cross section of b production is measured in gamma-gamma collisions for the first time. It is in excess of the QCD prediction by a factor of three.
Total cross section for charm production.
Total cross section for beauty production.
The production and semi-leptonic decay of heavy quarks have been studied in the photoproduction process $e^+p -> e^+ + {dijet} + e^- + X with the ZEUS detector at HERA using an integrated luminosity of 38.5 ${\rm pb^{-1}}$. Events with photon-proton centre-of-mass energies, $W_{\gamma p}$, between 134 and 269 GeV and a photon virtuality, Q^2, less than 1 ${\rm GeV^2}$ were selected requiring at least two jets of transverse energy $E_T^{\rm jet1(2)} >7(6)$ GeV and an electron in the final state. The electrons were identified by employing the ionisation energy loss measurement. The contribution of beauty quarks was determined using the transverse momentum of the electron relative to the axis of the closest jet, $p_T^{\rm rel}$. The data, after background subtraction, were fit with a Monte Carlo simulation including beauty and charm decays. The measured beauty cross section was extrapolated to the parton level with the b quark restricted to the region of transverse momentum $p_T^{b} > p_T^{\rm min} =$ 5 GeV and pseudorapidity $|\eta^{b}| <$ 2. The extrapolated cross section is $1.6 \pm 0.4 (stat.)^{+0.3}_{-0.5} (syst.) ^{+0.2}_{-0.4} (ext.) {nb}$. The result is compared to a perturbative QCD calculation performed to next-to-leading order.
The differential distribution of PT(C=REL) for heavy quark decays. The second DSYS error is due to the energy scale uncertainty.
The differential distribution of X(C=GAMMA,OBS), the fraction of the photons momentum contributing to the production of the two highest transverse energy jets. The second DSYS error is due to the energy scale uncertainty.
Cross section for beauty production with a prompt electron in the restricted kinetic region.
We present the results of a search for neutral Higgs bosons produced in association with $b$ quarks in $p\bar{p}\to b\bar{b} \phi\to b\bar{b}b\bar{b}$ final states with $91 \pm 7$ pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s}=1.8$ TeV recorded by the Collider Detector at Fermilab. We find no evidence of such a signal and the data is interpreted in the context of the neutral Higgs sector of the Minimal Supersymmetric extension of the Standard Model. With basic parameter choices for the supersymmetric scale and the stop quark mixing, we derive 95% C.L. lower mass limits for neutral Higgs bosons for $\tb$ values in excess of 35.
Here HIGGS stands for H(1)0 or H(2)0 or A0 supersymmetric Higgs boson.
The cross section for the production of Z boson pairs is measured using the data collected by the L3 detector at LEP in 1999 in e^+e^- collisions at centre-of-mass energies ranging from 192 GeV up to 202 GeV. Events in all the visible final states are selected, measuring the cross section of this process. The special case of final states containing b quarks is also investigated. All results are in agreement with the Standard Model predictions.
Two methodics are used for evaluation of the cross section's values.
The result is combination for different energies.
Jet production in charged and neutral current events in the kinematic range of Q^2 from 640 to 35000 GeV^2 is studied in deep-inelastic positron-proton scattering at HERA. The measured rate of multi-jet events and distributions of jet polar angle, transverse energy, dijet mass, and other dijet variables are presented. Using parton densities derived from inclusive DIS cross sections, perturbative QCD calculations in NLO are found to give a consistent description of both the neutral and charged current dijet production. A direct, model independent comparison of the jet distributions in charged and neutral current events confirms that the QCD dynamics of the hadronic final state is independent of the underlying electroweak scattering process.
Rates of charged current events as a function of Q**2.
Rates of neutral current events as a function of Q**2.
Normalised distribution in Y2 for NC and CC dijet events. Y2 is the smallest scaled value of KT (KTJET**2/W**2) given by the combination of (2+1) jets. The +1 refers to the proton remnant jet.
We present a study of events with W bosons and hadronic jets produced in p¯p collisions at a center of mass energy of 1.8 TeV. The data consist of 51400 W→eν decay candidates from 108 pb−1 of integrated luminosity collected using the CDF detector at the Fermilab Tevatron collider. Cross sections and jet production properties have been measured for W+>~1 to >~4 jet events. The data compare well to predictions of leading-order QCD matrix element calculations with added gluon radiation and simulated parton fragmentation.
W plus Njet cross sections.
The data collected by the L3 experiment at LEP at a centre-of-mass energy of 188.6 GeV are used to measure the W-pair production cross section and the W-boson decay branching fractions. These data correspond to an integrated luminosity of 176.8pb^-1. The total cross section for W-pair production, combining all final states, is measured to be sigma_WW = 16.24 +/- 0.37(stat.) +/- 0.22(syst.) pb. Including our data collected at lower centre-of-mass energies, the hadronic branching fraction of the W-boson is determined to be B(W ->qq) = [68.20 +/- 0.68 (stat.) +/- 0.33 (syst.) ] %. The results agree with the Standard Model predictions.
Quoted cross sections with W-boson decays (i.e. W +- < ... >) mean the cross sections times the corresponding branching ratios.
VCS is the CKM matrix element.
We search for a Higgs particle with anomalous couplings in the e+e- -> H gamma, e+e- -> HZ and e+e- -> He+e- processes with the L3 detector at LEP. We explore the mass range 70GeV < m_H < 170GeV using 176pb^-1 of integrated luminosity at a center-of-mass energy of \sqrt{s} = 189GeV. The Higgs decays H -> bb, H -> gamma gamma and H -> Z gamma are considered in the analysis. No evidence for anomalous Higgs production is found. This is interpreted in terms of limits on the anomalous couplings d, d_B, Delta g_1^Z and Delta kappa_gamma. Limits on the Gamma(H -> gamma gamma) and Gamma(H -> Z gamma) partial widths in the explored Higgs mass range are also obtained.
The cross section times BR(HIGGS --> 2GAMMA).
The cross section times BR(HIGGS --> BQ BQBAR).
The cross section times BR(HIGGS --> Z GAMMA).
The process e+e- -> W+W-gamma is analysed using the data collected with the L3 detector at LEP at a centre-of-mass energy of 188.6GeV, corresponding to an integrated luminosity of 176.8pb^-1. Based on a sample of 42 selected W+W- candidates containing an isolated hard photon, the W+W-gamma cross section, defined within phase-space cuts, is measured to be: sigma_WWgamma = 290 +/- 80 +/- 16 fb, consistent with the Standard Model expectation. Including the process e+e- -> nu nu gamma gamma, limits are derived on anomalous contributions to the Standard Model quartic vertices W+W- gamma gamma and W+W-Z gamma at 95% CL: -0.043 GeV^-2 < a_0/Lambda^2 < 0.043 GeV^-2 0.08 GeV^-2 < a_c/Lambda^2 < 0.13 GeV^-2 0.41 GeV^-2 < a_n/Lambda^2 < 0.37 GeV^-2.
Measured cross section within the limits of the cuts. THETA(C=GAMMA) is the angle between the photon and the beam axis. ALPHA(C=GAMMA) is the angle between the photon and that of the closest charged lepton or jet.
95 PCT confidence limits on the anomolous contributions.