TheA-dependence of the polarization ofΛ0,s produced inclusively in neutron-nucleus interactions at a mean neutron momentum of about 40 GeV/c has been measured in an experiment performed using the BIS-2 spectrometer at the Serpukhov accelerator. Carbon, Aluminium and Copper targets were used. TheΛ0,s were produced in the kinematical region of 0.6<pT<1.3 GeV/c and 0.2<xF<0.9. Describing the polarization of theΛ0,s by ℘=a·A a value of (−0.15+0.07/−0.60) was obtained by a fit to our data.
POLARIZATION IS DESCRIBED BY A POWER LOW: POL = C*A**B, WHERE C = -1.1, +0.4, -0.3 , A- ATOMIC NUMBER AND B = -0.15, +0.07, -0.6.
.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
In an experiment performed at Fermilab we have studied the production of high p t hadron jets from 400 GeV/ c pp interactions. A large solid-angle, towered calorimeter was used to trigger and reconstruct the jet events. We report results for inclusive single-jet production and compare those results with QCD predictions and results obtained at the ISR and the SPS Collider.
The invariant distribution is fitted to CONST*(1/PT**POWER)*(1-XT)**POWER.
Experimental data on the forward-backward asymmetry of π- emission in (d,4He,12C)181Ta interactions atp/A=4.2 GeV/c are presented. The absolute value of the asymmetry coefficient of the inclusive π- production in the nucleon-nucleonCMS decreases asAp−0.35 with increasing atomic mass of projectile nucleus. A method of obtaining the target-to-projectile ratio of the numbers of participant nucleonsNt/Np through measuring the velocity of the symmetric pion emission system is proposed. It has been found that Nt/Np∼Ap−0.73.
No description provided.
IN THE NUCLEON-NUCLEON CENTRE-OF-MASS SYSTEM.
IN THE NUCLEON-NUCLEON CENTRE-OF-MASS SYSTEM.
J/ψ production on hydrogen and tungsten targets has been compared at 39.5 GeV/ c and the variation of the A -dependence of the J/ψ cross section as a function of p t 2 and x F has been measured. The A -dependence parameter, α, rises with increasing p t 2 and falls with increasing x F . Both effects are shown not to be due to the Fermi motion of nucleons in the tungsten nucleus.
No description provided.
No description provided.
We have measured the relative cross sections for muon pair production by 280 GeV/ c negative pions on three different targets: carbon, copper, and tungsten. The value of α obtained from the parametrization σ = constant × A α is 0.94 ± 0.02 ± 0.02, whereas the parametrization σ≈σ 0 ( Z A ) A α′ , where σ 0 ( Z A ) is given by the Drell-Yan model, leads to α ′ = 0.97 ±0.02±0.02. This last result is in agreement with the quark additivity rule which is inherent in the Drell-Yan model, no dependence is observed on the transverse momentum of the muon pair.
PARAMETRISATION OF CROSS-SECTION IS SIG=CONST.*A**POWER.
PARAMETRISATION OF CROSS-SECTION IS SIG=SIG0(Z/A)*A**POWER WHERE SIG0(Z/A) IS GIVEN BY DRELL-YAN MODEL.
The longitudinal momentum spectra of mesons produced in the projectile fragmentation region ofK−p interactions at 110 GeV/c, measured in a bubble chamber experiment, are compared to two fragmentation models related to hadron production by incident leptons. The models give a qualitative description of the data. However, it is found that the mesons having a valence quark in common with the projectile tend to have higher momenta than predicted.
No description provided.
Dimuon production is studied in 217-GeV/c π−-hydrogen and π−-beryllium collisions with a lead-glass array to detect photons associated with the ψ. The ψ−γ mass spectrum shows a 2.6-standard-deviation excess of events above background at ∼3.5 GeV. This excess, if attributed to the decay χ(∼3.5)→ψγ, implies that 0.70±0.28 of the ψ's are produced via radiative decay of one of the χ states.
E*D(SIG)/D(XL) is fitted by (1-X)**POWER.
No description provided.
We present measurements of the production symmetric high-mass hadron and pion pairs by protons of 200, 300, and 400 GeV, incident on a beryllium target. The two-particle invariant cross section for pion production can be described by the function E1E2d6σdp13dp23=(1.7×10−28)pt−8.4(1−xt)14 cm2/GeV4 (where pt is the mean pt of the two hadrons). Functions of the same form have been used in describing single-pion inclusive production. Equality of the exponents of pt in the two processes is observed, confirming the role of smearing contributions to single-hadron cross sections.
E*D3(SIG)/D3(P) is fitted by CONST*(1-XT)**POWER*PT**POWER.
E1*E2*D6(SIG)/D3(P1)/D3(P2) is fitted by CONST*(1-XT)**POWER*PT**POWER, where PT is (pt1 + pt2)/2.