Measurements of Proton High Order Cumulants in 3 GeV Au+Au Collisions and Implications for the QCD Critical Point

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.Lett. 128 (2022) 202303, 2022.
Inspire Record 1981670 DOI 10.17182/hepdata.115559

We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity ($y$) and transverse momentum ($p_{\rm T}$) within $-0.5 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$. In the most central 0--5% collisions, a proton cumulant ratio is measured to be $C_4/C_2=-0.85 \pm 0.09 ~(\rm stat.) \pm 0.82 ~(\rm syst.)$, which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our $C_4/C_2$ in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in $C_4/C_2$ is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3 GeV.

10 data tables

$\sqrt{s_{NN}}$ = 3.0 GeV data (black markers), GM (red histogram), and single and pile-up contributions from unfolding. Vertical lines on markers represent statistical uncertainties. Single, pile-up and single+pile-up collisions are shown in solid blue markers, dashed green and dashed magenta curves, respectively. Analysis is performed on 0–5% central events, indicated by a black arrow.

$\sqrt{s_{NN}}$ = 3.0 GeV data (black markers), GM (red histogram), and single and pile-up contributions from unfolding. Vertical lines on markers represent statistical uncertainties. Single, pile-up and single+pile-up collisions are shown in solid blue markers, dashed green and dashed magenta curves, respectively. Analysis is performed on 0–5% central events, indicated by a black arrow.

Centrality dependence of the proton cumulant ratios for Au+Au collisions at $\sqrt{s_{NN}}$ = 3.0 GeV. Protons are from $-0.5 < y < 0$ and $0.4 < p_{T} < 2.0$ GeV/$c$. Systematic uncertainties are represented by gray bars. Statistical uncertainties are smaller than marker size. CBWC is applied to all cumulant ratios. While open squares represent the data without the VFC correction, blue triangles and red circles are the results with VFC using the $\langle N_{\rm{part}} \rangle$ distributions from the UrQMD and Glauber models, respectively. UrQMD model results are represented as gold dashed line.

More…

Disappearance of partonic collectivity in $\sqrt{s_{NN}}$ = 3 GeV Au+Au collisions at RHIC

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 827 (2022) 137003, 2022.
Inspire Record 1897294 DOI 10.17182/hepdata.110656

We report on the measurements of directed flow $v_1$ and elliptic flow $v_2$ for hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{S}^0$, $p$, $\phi$, $\Lambda$ and $\Xi^{-}$) from Au+Au collisions at $\sqrt{s_{NN}}$ = 3 GeV and $v_{2}$ for ($\pi^{\pm}$, $K^{\pm}$, $p$ and $\overline{p}$) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the number-of-constituent-quark (NCQ) scaling holds, at 3 GeV the $v_{2}$ at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the $v_1$ slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative $v_2$ and positive $v_1$ slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.

32 data tables

Event plane resolution as a function of collision centrality from Au+Au collisions at $\sqrt{s_{NN}}$=3 (a), 27 and 54.4 GeV (b). In case of the 3 GeV collisions, $\Psi_{1}$ is used to determine the event plane resolutions for the first and second harmonic coefficients shown as $R_{11}$ and $R_{12}$ in left panel. In the 27 and 54.4 GeV collisions, $\Psi_{2}$ is used to evaluate the second order event plane resolution, see right panel. In all cases, the statistic uncertainties are smaller than symbol sizes.

Rapidity($y$) dependence of $v_1$ (top panels) and $v_2$ (bottom panels) of proton and $\Lambda$ baryons (left panels), pions (middle panels) and kaons (right panels) in 10-40% centrality for the $\sqrt{s_{NN}}$ = 3GeV Au+Au collisions. Statistical and systematic uncertainties are shown as bars and gray bands, respectively. Some uncertainties are smaller than the data points. The UrQMD and JAM results are shown as bands:golden, red and blue bands stand for JAM mean-field, UrQMD mean-field and UrQMD cascade mode, respectively. The value of the incompressibility $\kappa$ = 380 MeV is used in the mean-field option. More detailed model descriptions and data comparisons can be found in Supplemental Material.

Rapidity($y$) dependence of $v_1$ (top panels) and $v_2$ (bottom panels) of proton and $\Lambda$ baryons (left panels), pions (middle panels) and kaons (right panels) in 10-40% centrality for the $\sqrt{s_{NN}}$ = 3GeV Au+Au collisions. Statistical and systematic uncertainties are shown as bars and gray bands, respectively. Some uncertainties are smaller than the data points. The UrQMD and JAM results are shown as bands:golden, red and blue bands stand for JAM mean-field, UrQMD mean-field and UrQMD cascade mode, respectively. The value of the incompressibility $\kappa$ = 380 MeV is used in the mean-field option. More detailed model descriptions and data comparisons can be found in Supplemental Material.

More…