Polarization and cross section of midrapidity J/$\psi$ production in proton-proton collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 102 (2020) 072008, 2020.
Inspire Record 1798581 DOI 10.17182/hepdata.141538

The PHENIX experiment has measured the spin alignment for inclusive $J/\psi\rightarrow e^{+}e^{-}$ decays in $p$+$p$ collisions at $\sqrt{s}=510$ GeV at midrapidity. The angular distributions have been measured in three different polarization frames, and the three decay angular coefficients have been extracted in a full two-dimensional analysis. Previously, PHENIX saw large longitudinal net polarization at forward rapidity at the same collision energy. This analysis at midrapidity, complementary to the previous PHENIX results, sees no sizable polarization in the measured transverse momentum range of $0.0<p_T<10.0$ GeV/$c$. The results are consistent with a previous one-dimensional analysis at midrapidity at $\sqrt{s}=200$ GeV. The transverse-momentum-dependent cross section for midrapidity $J/\psi$ production has additionally been measured, and after comparison to world data we find a simple logarithmic dependence of the cross section on $\sqrt{s}$.

10 data tables

$\lambda_{\theta}$ measured in $J/\psi$ transverse momentum bins of 0.0 < $p_T$ < 3.0 GeV/$c$ and 3.0 < $p_T$ < 10.0 GeV/$c$ overlaid with NRQCD predictions in the Helicity and Collins-Soper frames.

$\lambda_{\theta}$ measured in $J/\psi$ transverse momentum bins of 0.0 < $p_T$ < 3.0 GeV/$c$ and 3.0 < $p_T$ < 10.0 GeV/$c$ overlaid with NRQCD predictions in the Helicity and Collins-Soper frames.

$\lambda_{\phi}$ measured in $J/\psi$ transverse momentum bins of 0.0 < $p_T$ < 3.0 GeV/$c$ and 3.0 < $p_T$ < 10.0 GeV/$c$ overlaid with NRQCD predictions in the Helicity and Collins-Soper frames.

More…

Production of $b\bar{b}$ at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 102 (2020) 092002, 2020.
Inspire Record 1798586 DOI 10.17182/hepdata.139988

The cross section of bottom quark-antiquark ($b\bar{b}$) production in $p$+$p$ collisions at $\sqrt{s}=510$ GeV is measured with the PHENIX detector at the Relativistic Heavy Ion Collider. The results are based on the yield of high mass, like-sign muon pairs measured within the PHENIX muon arm acceptance ($1.2<|y|<2.2$). The $b\bar{b}$ signal is extracted from like-sign dimuons by utilizing the unique properties of neutral $B$ meson oscillation. We report a differential cross section of $d\sigma_{b\bar{b}\rightarrow \mu^\pm\mu^\pm}/dy = 0.16 \pm 0.01~(\mbox{stat}) \pm 0.02~(\mbox{syst}) \pm 0.02~(\mbox{global})$ nb for like-sign muons in the rapidity and $p_T$ ranges $1.2<|y|<2.2$ and $p_T>1$ GeV/$c$, and dimuon mass of 5--10 GeV/$c^2$. The extrapolated total cross section at this energy for $b\bar{b}$ production is $13.1 \pm 0.6~(\mbox{stat}) \pm 1.5~(\mbox{syst}) \pm 2.7~(\mbox{global})~\mu$b. The total cross section is compared to a perturbative quantum chromodynamics calculation and is consistent within uncertainties. The azimuthal opening angle between muon pairs from $b\bar{b}$ decays and their $p_T$ distributions are compared to distributions generated using {\sc ps pythia 6}, which includes next-to-leading order processes. The azimuthal correlations and pair $p_T$ distribution are not very well described by {\sc pythia} calculations, but are still consistent within uncertainties. Flavor creation and flavor excitation subprocesses are favored over gluon splitting.

4 data tables

$b\bar{b}$ differential cross section measured via B meson decay to like-sign dimuons as a function of rapidity and mass. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

$b\bar{b}$ differential cross section measured via B meson decay to all dimuons as a function of rapidity and mass. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

$b\bar{b}$ invariant yield measured via B meson decay to like-sign dimuons as a function of azimuthal opening angle. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 102 (2020) 032001, 2020.
Inspire Record 1789851 DOI 10.17182/hepdata.95883

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the longitudinal double spin asymmetries, $A_{LL}$, for charged pions at midrapidity ($|\eta|<0.35$) in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV. These measurements are sensitive to the gluon spin contribution to the total spin of the proton in the parton momentum fraction $x$ range between 0.04 and 0.09. One can infer the sign of the gluon polarization from the ordering of pion asymmetries with charge alone. The asymmetries are found to be consistent with global quantum-chromodynamics fits of deep-inelastic scattering and data at $\sqrt{s}=200$ GeV, which show a nonzero positive contribution of gluon spin to the proton spin.

1 data table

Double-spin asymmetries $A_{LL}$ as a function of transverse momentum for positive and negative pions.


Measurement of the Photon Beam Asymmetry in $\vec{\gamma} p\to K^+\Sigma^0$ at $E_{\gamma} = 8.5$ GeV

The GlueX collaboration Adhikari, S. ; Ali, A. ; Amaryan, M. ; et al.
Phys.Rev.C 101 (2020) 065206, 2020.
Inspire Record 1785913 DOI 10.17182/hepdata.110167

We report measurements of the photon beam asymmetry $\Sigma$ for the reaction $\vec{\gamma} p\to K^+\Sigma^0$(1193) using the GlueX spectrometer in Hall D at Jefferson Lab. Data were collected using a linearly polarized photon beam in the energy range of 8.2-8.8 GeV incident on a liquid hydrogen target. The beam asymmetry $\Sigma$ was measured as a function of the Mandelstam variable $t$, and a single value of $\Sigma$ was extracted for events produced in the $u$-channel. These are the first exclusive measurements of the photon beam asymmetry $\Sigma$ for the reaction in this energy range. For the $t$-channel, the measured beam asymmetry is close to unity over the $t$-range studied, $-t=(0.1-1.4)~$(GeV/$c$)$^{2}$, with an average value of $\Sigma = 1.00\pm 0.05$. This agrees with theoretical models that describe the reaction via the natural-parity exchange of the $K^{*}$(892) Regge trajectory. A value of $\Sigma = 0.41 \pm 0.09$ is obtained for the $u$-channel integrated up to $-u=2.0$~(GeV/$c$)$^{2}$.

2 data tables

Beam asymmetry $\Sigma$ for the low $-t$ region where the horizontal error bars indicate the rms widths of the $t$ bin. The uncertainties on $\Sigma$ are statistical and systematic (uncorrelated across t bins), respectively. There is an additional fully correlated systematic uncertainty of 2.1% on the magnitude of $\Sigma$.

Average beam asymmetry $\Sigma$ for the low $-u$ region where the uncertainty on $\Sigma$ is the statistical and systematic (uncorrelated across t bins), respectively. There is an additional fully correlated systematic uncertainty of 2.1% on the magnitude of $\Sigma$.


Net-proton number fluctuations and the Quantum Chromodynamics critical point

The STAR collaboration Adam, J. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.Lett. 126 (2021) 092301, 2021.
Inspire Record 1850675 DOI 10.17182/hepdata.101068

Non-monotonic variation with collision energy ($\sqrt{s_{\rm NN}}$) of the moments of the net-baryon number distribution in heavy-ion collisions, related to the correlation length and the susceptibilities of the system, is suggested as a signature for the Quantum Chromodynamics (QCD) critical point. We report the first evidence of a non-monotonic variation in kurtosis times variance of the net-proton number (proxy for net-baryon number) distribution as a function of \rootsnn with 3.1$\sigma$ significance, for head-on (central) gold-on-gold (Au+Au) collisions measured using the STAR detector at RHIC. Data in non-central Au+Au collisions and models of heavy-ion collisions without a critical point show a monotonic variation as a function of $\sqrt{s_{\rm NN}}$.

10 data tables

Event-by-event net-proton multiplicity distributions for central (0-5$\%$) Au+Au collisions from $\sqrt{s_{NN}} = 7.7 - 200 GeV. The distributions are normalised to total number of events. The distributions are not corrected for proton and antiproton detection efficiency.

Cumulants of net-proton distributions in Au+Au collisions for nine energies from $\sqrt{s_{NN}} = 7.7 - 200 GeV for 0-5$\%$ and 70-80$\%$ centrality.

Cumulant ratios C3/C2 and C4/C2 of net-proton distributions in Au+Au collisions for eight energies from $\sqrt{s_{NN}} = 7.7 - 62.4 GeV for 0-5$\%$ centrality. Also given are the derivative of the polynomial fits to the C3/C2 and C4/C2 vs energy at each energy and the Skellam baselines for the ratios.

More…

$J/\psi$ and $\psi(2S)$ production at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 101 (2020) 052006, 2020.
Inspire Record 1773662 DOI 10.17182/hepdata.140524

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/\psi$ and cross-section ratio of $\psi(2S)$ to $J/\psi$ at forward rapidity in \pp collisions at \sqrts = 510 GeV via the dimuon decay channel. Comparison is made to inclusive $J/\psi$ cross sections measured at \sqrts = 200 GeV and 2.76--13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-$x$ gluons in the proton at low transverse momentum ($p_T$) and to next-to-leading order nonrelativistic QCD calculations for the rest of the $p_T$ range. These calculations overestimate the data at low $p_T$. While consistent with the data within uncertainties above $\approx3$ GeV/$c$, the calculations are systematically below the data. The total cross section times the branching ratio is BR $d\sigma^{J/\psi}_{pp}/dy (1.2<|y|<2.2, 0<p_T<10~\mbox{GeV/$c$}) =$ 54.3 $\pm$ 0.5 (stat) $\pm$ 5.5 (syst) nb.

3 data tables

The total cross section times the branching ratio.

The inclusive $J/\psi$ differential cross section as a function of $p_T$ at 1.2 < $|y|$ < 2.2 at 510 GeV.

The inclusive $J/\psi$ differential cross section integrated over 0 < $p_T$ < 10 GeV/$c$ as a function of rapidity at 510 GeV.


Measurement of $J/\psi$ at forward and backward rapidity in $p+p$, $p+A$l, $p+A$u, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200~{\rm GeV}$

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 102 (2020) 014902, 2020.
Inspire Record 1762446 DOI 10.17182/hepdata.98626

Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.

36 data tables

J/psi invariant yields in p+p collisions as a function of pT at forward and backward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification in p+Al, p+Au and 3He+Au collisions as a function of centrality and rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification in p+Al collisions as a function of centrality and rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Beam Asymmetry $\mathbf{\Sigma}$ for the Photoproduction of $\mathbf{\eta}$ and $\mathbf{\eta^{\prime}}$ Mesons at $\mathbf{E_{\gamma}=8.8}$GeV

The GlueX collaboration Adhikari, S. ; Ali, A. ; Amaryan, M. ; et al.
Phys.Rev.C 100 (2019) 052201, 2019.
Inspire Record 1749712 DOI 10.17182/hepdata.110166

We report on the measurement of the beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\rightarrow p\eta$ and $\vec{\gamma}p \rightarrow p\eta^{\prime}$ from the GlueX experiment, using an 8.2--8.8 GeV linearly polarized tagged photon beam incident on a liquid hydrogen target in Hall D at Jefferson Lab. These measurements are made as a function of momentum transfer $-t$, with significantly higher statistical precision than our earlier $\eta$ measurements, and are the first measurements of $\eta^{\prime}$ in this energy range. We compare the results to theoretical predictions based on $t$--channel quasi-particle exchange. We also compare the ratio of $\Sigma_{\eta}$ to $\Sigma_{\eta^{\prime}}$ to these models, as this ratio is predicted to be sensitive to the amount of $s\bar{s}$ exchange in the production. We find that photoproduction of both $\eta$ and $\eta^{\prime}$ is dominated by natural parity exchange with little dependence on $-t$.

3 data tables

Values and errors for the photon beam asymmetry $\Sigma_{\eta}$ for the reaction $\gamma p \rightarrow \eta p$ with $\eta\rightarrow\gamma\gamma$. For the binning in $t$, we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature. Not reported here is the $2.1\%$ relative uncertainty due to the determination of the polarization of the photon beam.

Values and errors for the photon beam asymmetry $\Sigma_{\eta\prime}$ for the reaction $\gamma p \rightarrow \eta^{\prime} p$ with $\eta^{\prime}\rightarrow \eta\pi^{+}\pi^{-}$ and the $\eta\rightarrow\gamma\gamma$. For the binning in $t$, we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta\prime}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature. Not reported here is the $2.1\%$ relative uncertainty due to the determination of the polarization of the photon beam.

Values and errors for the ratio of photon beam asymmetries $\Sigma_{\eta\prime}/\Sigma_{\eta}$ for the reported reactions. To form the ratio, the $\eta$ analysis is done with the same binning in $t$ as the $\eta^\prime$ analysis, and for each bin we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta\prime}/\Sigma_{\eta}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature.}


Nuclear-modification factor of charged hadrons at forward and backward rapidity in $p$$+$Al and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.C 101 (2020) 034910, 2020.
Inspire Record 1741109 DOI 10.17182/hepdata.106658

The PHENIX experiment has studied nuclear effects in $p$$+$Al and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV on charged hadron production at forward rapidity ($1.4<\eta<2.4$, $p$-going direction) and backward rapidity ($-2.2<\eta<-1.2$, $A$-going direction). Such effects are quantified by measuring nuclear modification factors as a function of transverse momentum and pseudorapidity in various collision multiplicity selections. In central $p$$+$Al and $p$$+$Au collisions, a suppression (enhancement) is observed at forward (backward) rapidity compared to the binary scaled yields in $p$+$p$ collisions. The magnitude of enhancement at backward rapidity is larger in $p$$+$Au collisions than in $p$$+$Al collisions, which have a smaller number of participating nucleons. However, the results at forward rapidity show a similar suppression within uncertainties. The results in the integrated centrality are compared with calculations using nuclear parton distribution functions, which show a reasonable agreement at the forward rapidity but fail to describe the backward rapidity enhancement.

11 data tables

RpA of charged hadrons as a function of pT at forward and backward rapidity in p+Al 0%-100% centrality.

RpA of charged hadrons as a function of pT at forward and backward rapidity in p+Au 0%-100% centrality.

RpA of charged hadrons as a function of eta at forward and backward rapidity in p+Al and p+Au 0%-100% centrality.

More…

First measurement of near-threshold J/$\psi $ exclusive photoproduction off the proton

The GlueX collaboration Ali, A. ; Amaryan, M. ; Anassontzis, E.G. ; et al.
Phys.Rev.Lett. 123 (2019) 072001, 2019.
Inspire Record 1736890 DOI 10.17182/hepdata.110173

We report on the measurement of the $\gamma p \rightarrow J/\psi p$ cross section from $E_\gamma = 11.8$ GeV down to the threshold at $8.2$ GeV using a tagged photon beam with the GlueX experiment. We find the total cross section falls toward the threshold less steeply than expected from two-gluon exchange models. The differential cross section $d\sigma /dt$ has an exponential slope of $1.67 \pm 0.39$ GeV$^{-2}$ at $10.7$ GeV average energy. The LHCb pentaquark candidates $P_c^+$ can be produced in the $s$-channel of this reaction. We see no evidence for them and set model-dependent upper limits on their branching fractions $\mathcal{B}(P_c^+ \rightarrow J/\psi p)$ and cross sections $\sigma(\gamma p \to P_c^+)\times\mathcal{B}(P_c^+ \to J/\psi p) $.

2 data tables

$\gamma p \rightarrow J/\psi p$ total cross-sections, statistical and systematic errors of the individual points in bins of beam energy. There is an additional fully correlated systematic uncertainty of 26.7% on the total cross section, not included here.

$\gamma p \rightarrow J/\psi p$ differential cross-sections, statistical and systematic errors of the individual points in bins of $-(t-t_{min})$. There is an additional fully correlated systematic uncertainty of 26.7% on the total cross section, not included here.


Nuclear dependence of the transverse single-spin asymmetry in the production of charged hadrons at forward rapidity in polarized $p+p$, $p+$Al, and $p+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.Lett. 123 (2019) 122001, 2019.
Inspire Record 1725616 DOI 10.17182/hepdata.141938

We report on the nuclear dependence of transverse single-spin asymmetries (TSSAs) in the production of positively-charged hadrons in polarized $p^{\uparrow}+p$, $p^{\uparrow}+$Al and $p^{\uparrow}+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The measurements have been performed at forward rapidity ($1.4<\eta<2.4$) over the range of $1.8<p_{T}<7.0$ GeV$/c$ and $0.1<x_{F}<0.2$. We observed a positive asymmetry $A_{N}$ for positively-charged hadrons in \polpp collisions, and a significantly reduced asymmetry in $p^{\uparrow}$+$A$ collisions. These results reveal a nuclear dependence of charged hadron $A_N$ in a regime where perturbative techniques are relevant. These results provide new opportunities to use \polpA collisions as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions and to use TSSA as a new handle in studying small-system collisions.

2 data tables

$A_N$ as a function of $A^{1/3}$ for positively-charged hadrons at 1.4 < $\eta$ < 2.4, 0.1 < $x_F$ < 0.2, and 1.8 < $p_T$ < 7.0 GeV/$c$ in $p^{\uparrow}$+$p$, $p^{\uparrow}$+Al, and $p^{\uparrow}$+Au collisions.

$A_N$ as a function of $N^{Avg.}_{coll}$ for positively-charged hadrons at 1.4 < $\eta$ < 2.4, 0.1 < $x_F$ < 0.2, and 1.8 < $p_T$ < 7.0 GeV/$c$ in $p^{\uparrow}$+$p$, $p^{\uparrow}$+Al, and $p^{\uparrow}$+Au collisions.


Measurement of charm and bottom production from semileptonic hadron decays in $p$$+$$p$ collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.D 99 (2019) 092003, 2019.
Inspire Record 1716636 DOI 10.17182/hepdata.142288

Measurements of the differential production of electrons from open-heavy-flavor hadrons with charm- and bottom-quark content in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV are presented. The measurements proceed through displaced-vertex analyses of electron tracks from the semileptonic decay of charm and bottom hadrons using the PHENIX silicon-vertex detector. The relative contribution of electrons from bottom decays to inclusive heavy-flavor-electron production is found to be consistent with fixed-order-plus-next-to-leading-log perturbative-QCD calculations within experimental and theoretical uncertainties. These new measurements in $p$$+$$p$ collisions provide a precision baseline for comparable forthcoming measurements in A$+$A collisions.

5 data tables

Inclusive heavy-flavor-electron invariant yield from the refolded charm and bottom yields (closed squares [red]) compared to published data (closed circles [gray]).

Inclusive heavy-flavor-electron invariant yield from the refolded charm and bottom yields (closed squares [red]) compared to published data (closed circles [gray]).

Unfolded charm and bottom hadron yields in bins of transverse momentum.

More…

Nonperturbative transverse momentum broadening in dihadron angular correlations in $\sqrt{s_{NN}}=200$ GeV proton-nucleus collisions

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.C 99 (2019) 044912, 2019.
Inspire Record 1695272 DOI 10.17182/hepdata.141680

The PHENIX collaboration has measured high-$p_T$ dihadron correlations in $p$$+$$p$, $p$$+$Al, and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The correlations arise from inter- and intra-jet correlations and thus have sensitivity to nonperturbative effects in both the initial and final states. The distributions of $p_{\rm out}$, the transverse momentum component of the associated hadron perpendicular to the trigger hadron, are sensitive to initial and final state transverse momenta. These distributions are measured multi-differentially as a function of $x_E$, the longitudinal momentum fraction of the associated hadron with respect to the trigger hadron. The near-side $p_{\rm out}$ widths, sensitive to fragmentation transverse momentum, show no significant broadening between $p$$+$Au, $p$$+$Al, and $p$$+$$p$. The away-side nonperturbative $p_{\rm out}$ widths are found to be broadened in $p$$+$Au when compared to $p$$+$$p$; however, there is no significant broadening in $p$$+$Al compared to $p$$+$$p$ collisions. The data also suggest that the away-side $p_{\rm out}$ broadening is a function of $N_{\rm coll}$, the number of binary nucleon-nucleon collisions, in the interaction. The potential implications of these results with regard to initial and final state transverse momentum broadening and energy loss of partons in a nucleus, among other nuclear effects, are discussed.

1 data table

The Gaussian width differences between $p$+$A$ and $p$+$p$ are shown in two $x_E$ bins as a function of $N_{coll}$.


Pseudorapidity dependence of particle production and elliptic flow in asymmetric nuclear collisions of $p$$+$Al, $p$$+$Au, $d$$+$Au, and $^{3}$He$+$Au at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 121 (2018) 222301, 2018.
Inspire Record 1684475 DOI 10.17182/hepdata.136476

Asymmetric nuclear collisions of $p$$+$Al, $p$$+$Au, $d$$+$Au, and $^{3}$He$+$Au at $\sqrt{s_{_{NN}}}=200$ GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their initial creation in the collision. We present measurements of charged hadron production $dN_{\rm ch}/d\eta$ in all such collision systems over a broad pseudorapidity range and as a function of collision multiplicity. A simple wounded quark model is remarkably successful at describing the full data set. We also measure the elliptic flow $v_{2}$ over a similarly broad pseudorapidity range. These measurements provide key constraints on models of particle emission and their translation into flow.

14 data tables

Charged hadron $dN_{ch}/d\eta$ as a function of pseudorapidity in high-multiplicity 0%-5% central $^3$He+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Charged hadron $dN_{ch}/d\eta$ as a function of pseudorapidity in high-multiplicity 0%-5% central $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Charged hadron $dN_{ch}/d\eta$ as a function of pseudorapidity in high-multiplicity 0%-5% central $p$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

More…

Creating small circular, elliptical, and triangular droplets of quark-gluon plasma

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Nature Phys. 15 (2019) 214-220, 2019.
Inspire Record 1672133 DOI 10.17182/hepdata.99787

The experimental study of the collisions of heavy nuclei at relativistic energies has established the properties of the quark-gluon plasma (QGP), a state of hot, dense nuclear matter in which quarks and gluons are not bound into hadrons. In this state, matter behaves as a nearly inviscid fluid that efficiently translates initial spatial anisotropies into correlated momentum anisotropies among the produced particles, producing a common velocity field pattern known as collective flow. In recent years, comparable momentum anisotropies have been measured in small-system proton-proton ($p$$+$$p$) and proton-nucleus ($p$$+$$A$) collisions, despite expectations that the volume and lifetime of the medium produced would be too small to form a QGP. Here, we report on the observation of elliptic and triangular flow patterns of charged particles produced in proton-gold ($p$$+$Au), deuteron-gold ($d$$+$Au), and helium-gold ($^3$He$+$Au) collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_{NN}}}$~=~200 GeV. The unique combination of three distinct initial geometries and two flow patterns provides unprecedented model discrimination. Hydrodynamical models, which include the formation of a short-lived QGP droplet, provide a simultaneous description of these measurements.

16 data tables

$v_2$for 0-5% central p+Au collisions

$v_2$for 0-5% central d+Au collisions

$v_2$for 0-5% central $^3$He+Au collisions

More…

Nonperturbative transverse-momentum-dependent effects in dihadron and direct photon-hadron angular correlations in $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.D 98 (2018) 072004, 2018.
Inspire Record 1672014 DOI 10.17182/hepdata.143196

Dihadron and isolated direct photon-hadron angular correlations are measured in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The correlations are sensitive to nonperturbative initial-state and final-state transverse momentum $k_T$ and $j_T$ in the azimuthal nearly back-to-back region $\Delta\phi\sim\pi$. In this region, transverse-momentum-dependent evolution can be studied when several different hard scales are measured. To have sensitivity to small transverse momentum scales, nonperturbative momentum widths of $p_{\rm out}$, the out-of-plane transverse momentum component perpendicular to the trigger particle, are measured. These widths are used to investigate possible effects from transverse-momentum-dependent factorization breaking. When accounting for the longitudinal momentum fraction of the away-side hadron with respect to the near-side trigger particle, the widths are found to increase with the hard scale; this is qualitatively similar to the observed behavior in Drell-Yan and semi-inclusive deep-inelastic scattering interactions. The momentum widths are also studied as a function of center-of-mass energy by comparing to previous measurements at $\sqrt{s}=510$ GeV. The nonperturbative jet widths also appear to increase with $\sqrt{s}$ at a similar $x_T$, which is qualitatively consistent to similar measurements in Drell-Yan interactions. To quantify the magnitude of any transverse-momentum-dependent factorization breaking effects, calculations will need to be performed to compare to these measurements.

36 data tables

The per-trigger yields are shown as a function of $\Delta\phi$ in several $p_T^{trig}$ $\otimes$ $p_T^{assoc}$ bins.

The per-trigger yields are shown as a function of $\Delta\phi$ in several $p_T^{trig}$ $\otimes$ $p_T^{assoc}$ bins.

The per-trigger yields are shown as a function of $\Delta\phi$ in several $p_T^{trig}$ $\otimes$ $p_T^{assoc}$ bins.

More…

Measurements of $\mu\mu$ pairs from open heavy flavor and Drell-Yan in $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.D 99 (2019) 072003, 2019.
Inspire Record 1672015 DOI 10.17182/hepdata.144516

PHENIX reports differential cross sections of $\mu\mu$ pairs from semileptonic heavy-flavor decays and the Drell-Yan production mechanism measured in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV at forward and backward rapidity ($1.2<|\eta|<2.2$). The $\mu\mu$ pairs from $c\bar{c}$, $b\bar{b}$, and Drell-Yan are separated using a simultaneous fit to unlike- and like-sign muon pair spectra in mass and $p_T$. The azimuthal opening angle correlation between the muons from $c\bar{c}$ and $b\bar{b}$ decays and the pair-$p_T$ distributions are compared to distributions generated using {\sc pythia} and {\sc powheg} models, which both include next-to-leading order processes. The measured distributions for pairs from $c\bar{c}$ are consistent with {\sc pythia} calculations. The $c\bar{c}$ data presents narrower azimuthal correlations and softer $p_T$ distributions compared to distributions generated from {\sc powheg}. The $b\bar{b}$ data are well described by both models. The extrapolated total cross section for bottom production is $3.75{\pm}0.24({\rm stat}){\pm}^{0.35}_{0.50}({\rm syst}){\pm}0.45({\rm global})$[$\mu$b], which is consistent with previous measurements at the Relativistic Heavy Ion Collider in the same system at the same collision energy, and is approximately a factor of two higher than the central value calculated with theoretical models. The measured Drell-Yan cross section is in good agreement with next-to-leading-order quantum-chromodynamics calculations.

28 data tables

Inclusive $\mu^+ \mu^-$ pair mass distributions from $p$+$p$ collisions at $\sqrt{s}$ = 200 GeV over the mass range from 0 to 15 GeV/$c^2$. Results are shown separately for the south and north muon arms. The data are compared to the cocktail of expected sources.

Inclusive like-sign $\mu \mu$ pair yield from $p$+$p$ collisions as a function of mass for the south and north muon arms and the ratio of data to expected sources.

Inclusive unlike-sign $\mu \mu$ pair yield from $p$+$p$ collisions at $\sqrt{s}$ = 200 GeV as a function of mass in different $p_T$ slices for the south and north muon arms and the ratio of data to expected sources.

More…

Single-spin asymmetry of $J/\psi$ production in $p$$+$$p$, $p$$+$Al, and $p$$+$Au collisions with transversely polarized proton beams at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.D 98 (2018) 012006, 2018.
Inspire Record 1671782 DOI 10.17182/hepdata.142340

We report the transverse single-spin asymmetries of $J/\psi$ production at forward and backward rapidity, $1.2<|y|<2.2$, as a function of $J/\psi$ transverse momentum ($p_T$) and Feynman-$x$ ($x_F$). The data analyzed were recorded by the PHENIX experiment at the Relativistic Heavy Ion Collider in 2015 from $p$$+$$p$, $p$$+$Al, and $p$$+$Au collisions with transversely polarized proton beams at $\sqrt{s_{_{NN}}}=200$ GeV. At this collision energy, single-spin asymmetries for heavy-flavor particle production of $p$$+$$p$ collisions provide access to the spin-dependent gluon distribution and higher-twist correlation functions inside the nucleon, such as the gluon Qiu-Sterman and trigluon correlation functions. Proton+nucleus collisions offer an excellent opportunity to study nuclear effects on the correlation functions. The data indicate negative asymmetries at the two-standard-deviation level in the $p$$+$Au data for $p_T<2$ GeV/$c$ at both forward and backward rapidity, while in $p$$+$$p$ and $p$$+$Al collisions the asymmetries are consistent with zero within the range of experimental uncertainties.

8 data tables

Forward [$x_F$ > 0] $A^{J/\psi}_N$ vs low $p_T$ for $p$+$p$, $p$+Al, and $p$+Au collisions.

Forward [$x_F$ > 0] $A^{J/\psi}_N$ vs high $p_T$ for $p$+$p$, $p$+Al, and $p$+Au collisions.

Backward [$x_F$ < 0] $A^{J/\psi}_N$ vs low $p_T$ for $p$+$p$, $p$+Al, and $p$+Au collisions.

More…

Multi-particle azimuthal correlations for extracting event-by-event elliptic and triangular flow in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 99 (2019) 024903, 2019.
Inspire Record 1670164 DOI 10.17182/hepdata.150019

We present measurements of elliptic and triangular azimuthal anisotropy of charged particles detected at forward rapidity $1<|\eta|<3$ in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, as a function of centrality. The multiparticle cumulant technique is used to obtain the elliptic flow coefficients $v_2\{2\}$, $v_2\{4\}$, $v_2\{6\}$, and $v_2\{8\}$, and triangular flow coefficients $v_3\{2\}$ and $v_3\{4\}$. Using the small-variance limit, we estimate the mean and variance of the event-by-event $v_2$ distribution from $v_2\{2\}$ and $v_2\{4\}$. In a complementary analysis, we also use a folding procedure to study the distributions of $v_2$ and $v_3$ directly, extracting both the mean and variance. Implications for initial geometrical fluctuations and their translation into the final state momentum distributions are discussed.

21 data tables

Centrality dependence of (a) $v_2${2} and (b) $v_2${4}. (a) The red points indicate no pseudorapidity gap whereas the magenta points indicate a pseudorapidity gap of |$\Delta\eta$| > 2.0. (b) The black points indicate $v_2${4} with no pseudorapidity gap, the blue points indicate a two-subevent method with |$\Delta\eta$| > 2.0 but where some short-range pairs are allowed, and the red points indicate a two-subevent method with |$\Delta\eta$| > 2.0 where no short-range pairs are allowed.

Centrality dependence of (a) $v_2${2} and (b) $v_2${4}. (a) The red points indicate no pseudorapidity gap whereas the magenta points indicate a pseudorapidity gap of |$\Delta\eta$| > 2.0. (b) The black points indicate $v_2${4} with no pseudorapidity gap, the blue points indicate a two-subevent method with |$\Delta\eta$| > 2.0 but where some short-range pairs are allowed, and the red points indicate a two-subevent method with |$\Delta\eta$| > 2.0 where no short-range pairs are allowed.

Centrality dependence of (a) $v_2${2} and (b) $v_2${4}. (a) The red points indicate no pseudorapidity gap whereas the magenta points indicate a pseudorapidity gap of |$\Delta\eta$| > 2.0. (b) The black points indicate $v_2${4} with no pseudorapidity gap, the blue points indicate a two-subevent method with |$\Delta\eta$| > 2.0 but where some short-range pairs are allowed, and the red points indicate a two-subevent method with |$\Delta\eta$| > 2.0 where no short-range pairs are allowed.

More…

Cross section and longitudinal single-spin asymmetry $A_L$ for forward $W^{\pm}\rightarrow\mu^{\pm}\nu$ production in polarized $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 98 (2018) 032007, 2018.
Inspire Record 1667398 DOI 10.17182/hepdata.141628

We have measured the cross section and single spin asymmetries from forward $W^{\pm}\rightarrow\mu^{\pm}\nu$ production in longitudinally polarized $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV using the PHENIX detector at the Relativistic Heavy Ion Collider. The cross sections are consistent with previous measurements at this collision energy, while the most forward and backward longitudinal single spin asymmetries provide new insights into the sea quark helicities in the proton. The charge of the W bosons provides a natural flavor separation of the participating partons.

2 data tables

Single-spin asymmetries at forward $A^{FW}_L$ and backward $A^{BW}_L$ rapidities for $p$+$p$ collisions at $\sqrt{s}$ = 510 GeV for results in 2013 and 2012, plus combined results for both years.

The total $W$ boson production cross sections for $p$+$p$ collisions at $\sqrt{s}$ = 510 GeV for $\sigma$($W^+$ $\rightarrow$ $\mu^+$) and $\sigma$($W^-$ $\rightarrow$ $\mu^-$).


Light isovector resonances in $\pi^- p \to \pi^-\pi^-\pi^+ p$ at 190 GeV/${\it c}$

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 98 (2018) 092003, 2018.
Inspire Record 1655631 DOI 10.17182/hepdata.82958

We have performed the most comprehensive resonance-model fit of $\pi^-\pi^-\pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $\pi^- + p \to \pi^-\pi^-\pi^+ + p_\text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 &lt; m_{3\pi} &lt; 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 &lt; t' &lt; 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $\pi(1800)$, $a_1(1260)$, $a_2(1320)$, $\pi_2(1670)$, $\pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $\pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $\pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t'$ bins. We extract the relative branching fractions of the $\rho(770) \pi$ and $f_2(1270) \pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t'$ dependence of the intensity of the resonances and of their phases. The $t'$ dependence of the intensities of most resonances differs distinctly from the $t'$ dependence of the nonresonant components. For the first time, we determine the $t'$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.

2 data tables

Real and imaginary parts of the normalized transition amplitudes $\mathcal{T}_a$ of the 14 selected partial waves in the 1100 $(m_{3\pi}, t')$ cells (see Eq. (12) in the paper). The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the transition amplitudes in the column headers. The $m_{3\pi}$ values that are given in the first column correspond to the bin centers. Each of the 100 $m_{3\pi}$ bins is 20 MeV/$c^2$ wide. Since the 11 $t'$ bins are non-equidistant, the lower and upper bounds of each $t'$ bin are given in the column headers. The transition amplitudes define the spin-density matrix elements $\varrho_{ab}$ for waves $a$ and $b$ according to Eq. (18). The spin-density matrix enters the resonance-model fit via Eqs. (33) and (34). The transition amplitudes are normalized via Eqs. (9), (16), and (17) such that the partial-wave intensities $\varrho_{aa} = |\mathcal{T}_a|^2$ are given in units of acceptance-corrected number of events. The relative phase $\Delta\phi_{ab}$ between two waves $a$ and $b$ is given by $\arg(\varrho_{ab}) = \arg(\mathcal{T}_a) - \arg(\mathcal{T}_b)$. Note that only relative phases are well-defined. The phase of the $1^{++}0^+ \rho(770) \pi S$ wave was set to $0^\circ$ so that the corresponding transition amplitudes are real-valued. In the PWA model, some waves are excluded in the region of low $m_{3\pi}$ (see paper and [Phys. Rev. D 95, 032004 (2017)] for a detailed description of the PWA model). For these waves, the transition amplitudes are set to zero. The tables with the covariance matrices of the transition amplitudes for all 1100 $(m_{3\pi}, t')$ cells can be downloaded via the 'Additional Resources' for this table.

Decay phase-space volume $I_{aa}$ for the 14 selected partial waves as a function of $m_{3\pi}$, normalized such that $I_{aa}(m_{3\pi} = 2.5~\text{GeV}/c^2) = 1$. The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the decay phase-space volume in the column headers. The labels are identical to the ones used in the column headers of the table of the transition amplitudes. $I_{aa}$ is calculated using Monte Carlo integration techniques for fixed $m_{3\pi}$ values, which are given in the first column, in the range from 0.5 to 2.5 GeV/$c^2$ in steps of 10 MeV/$c^2$. The statistical uncertainties given for $I_{aa}$ are due to the finite number of Monte Carlo events. $I_{aa}(m_{3\pi})$ is defined in Eq. (6) in the paper and appears in the resonance model in Eqs. (19) and (20).


Measurements of mass-dependent azimuthal anisotropy in central $p+$Au, $d+$Au, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 97 (2018) 064904, 2018.
Inspire Record 1632759 DOI 10.17182/hepdata.141812

We present measurements of the transverse-momentum dependence of elliptic flow $v_2$ for identified pions and (anti)protons at midrapidity ($|\eta|<0.35$), in 0%--5% central $p$$+$Au and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. When taken together with previously published measurements in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of $v_2(p_{T})$ in $d$$+$Au and $^3$He$+$Au collisions, just as in large nucleus-nucleus ($A$$+$$A$) collisions, and a smaller splitting in $p$$+$Au collisions. Both hydrodynamic and transport model calculations successfully describe the data at low $p_T$ ($< 1.5$ GeV/$c$), but fail to describe various features at higher $p_T$. In all systems, the $v_2$ values follow an approximate quark-number scaling as a function of the hadron transverse kinetic energy per constituent quark($KE_T/n_q$), which was also seen previously in $A$$+$$A$ collisions.

4 data tables

Values of $v_2$($p_T$) for kaons in central 0-5% $p$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Values of $v_2$($p_T$) for kaons in central 0-5% $^3$He+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Transverse momentum dependence of $v_2$ for identified pions and protons within $|\eta|$ < 0.35 in 0-5% central $p$+Au collisions.

More…

Measurement of $\phi$-meson production at forward rapidity in $p$$+$$p$ collisions at $\sqrt{s}$=510 GeV and energy dependence of $\sigma_\phi$ from $\sqrt{s}$=200 GeV to 7 TeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 98 (2018) 092006, 2018.
Inspire Record 1628651 DOI 10.17182/hepdata.142337

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section of $\phi$(1020) meson production at forward rapidity in $p$$+$$p$ collisions at $\sqrt{s}=$510 GeV via the dimuon decay channel. The integrated cross section in the rapidity and $p_T$ ranges $1.2<|y|<2.2$ and $2<p_T<7$ GeV/$c$ is $\sigma_\phi=2.79 \pm 0.20\,{\rm (stat)} \pm 0.17\,{\rm (syst)} \pm 0.34\, {\rm (norm)} \times 10^{-2}$~mb. The energy dependence of $\sigma_\phi$ ($1.2<|y|<2.2$; $2<p_T<5$ GeV/$c$) is studied using the PHENIX measurements at $\sqrt{s}=$200 and 510 GeV and the Large-Hadron-Collider measurements at $\sqrt{s}=$2.76 and 7 TeV. The experimental results are compared to various event generator predictions (pythia6, pythia8, phojet, ampt, epos3, and epos-lhc).

3 data tables

The $\phi$-meson-production cross section d$\sigma_{\phi}$/dy in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV integrated in the transverse-momentum range 2 < $p_T$ < 7 GeV/$c$.

The $\phi$-meson-production cross section d$\sigma_{\phi}$/dy in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV integrated in the transverse-momentum range 2 < $p_T$ < 7 GeV/$c$.

The $\phi$-meson-differential-production cross section d${}^{2}$$\sigma_{\phi}/dp_T dy$ for 1.2 < |y| < 2.2 in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV.


Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 97 (2018) 032006, 2018.
Inspire Record 1624692 DOI 10.17182/hepdata.83542

A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality $Q^{2}>1$ (GeV/$c$)$^2$, invariant mass of the hadronic system $W > 5$ GeV/$c^2$, Bjorken scaling variable in the range $0.003 < x < 0.4$, fraction of the virtual photon energy carried by the hadron in the range $0.2 < z < 0.8$, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/$c)^2 < P_{\rm{hT}}^{2} < 3$ (GeV/$c$)$^2$. The multiplicities are presented as a function of $P_{\rm{hT}}^{2}$ in three-dimensional bins of $x$, $Q^2$, $z$ and compared to previous semi-inclusive measurements. We explore the small-$P_{\rm{hT}}^{2}$ region, i.e. $P_{\rm{hT}}^{2} < 1$ (GeV/$c$)$^2$, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger $P_{\rm{hT}}^{2}$, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small $P_{\rm{hT}}^{2}$ to study the dependence of the average transverse momentum $\langle P_{\rm{hT}}^{2}\rangle$ on $x$, $Q^2$ and $z$. The power-law behaviour of the multiplicities at large $P_{\rm{hT}}^{2}$ is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.

162 data tables
More…

Helicity-dependent cross sections and double-polarization observable E in eta photoproduction from quasi-free protons and neutrons

The A2 collaboration Witthauer, L. ; Dieterle, M. ; Abt, S. ; et al.
Phys.Rev.C 95 (2017) 055201, 2017.
Inspire Record 1589331 DOI 10.17182/hepdata.132013

Precise helicity-dependent cross sections and the double-polarization observable $E$ were measured for $\eta$ photoproduction from quasi-free protons and neutrons bound in the deuteron. The $\eta\rightarrow 2\gamma$ and $\eta\rightarrow 3\pi^0\rightarrow 6\gamma$ decay modes were used to optimize the statistical quality of the data and to estimate systematic uncertainties. The measurement used the A2 detector setup at the tagged photon beam of the electron accelerator MAMI in Mainz. A longitudinally polarized deuterated butanol target was used in combination with a circularly polarized photon beam from bremsstrahlung of a longitudinally polarized electron beam. The reaction products were detected with the electromagnetic calorimeters Crystal Ball and TAPS, which covered 98\% of the full solid angle. The results show that the narrow structure observed earlier in the unpolarized excitation function of $\eta$ photoproduction off the neutron appears only in reactions with antiparallel photon and nucleon spin ($\sigma_{1/2}$). It is absent for reactions with parallel spin orientation ($\sigma_{3/2}$) and thus very probably related to partial waves with total spin 1/2. The behavior of the angular distributions of the helicity-dependent cross sections was analyzed by fitting them with Legendre polynomials. The results are in good agreement with a model from the Bonn-Gatchina group, which uses an interference of $P_{11}$ and $S_{11}$ partial waves to explain the narrow structure.

81 data tables

Diff. cross section for helicity-1/2 at W= 1.505 GeV

Diff. cross section for helicity-1/2 at W= 1.515 GeV

Diff. cross section for helicity-1/2 at W= 1.525 GeV

More…

Nuclear dependence of the transverse-single-spin asymmetry for forward neutron production in polarized $p$$+$$A$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.Lett. 120 (2018) 022001, 2018.
Inspire Record 1520869 DOI 10.17182/hepdata.141894

During 2015 the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized $p$$+$$p$ collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in $p$$+$$p$ collisions predicts only a moderate atomic-mass-number ($A$) dependence. In contrast, the asymmetries observed at RHIC in $p$$+$$A$ collisions showed a surprisingly strong $A$ dependence in inclusive forward neutron production. The observed asymmetry in $p$$+$Al collisions is much smaller, while the asymmetry in $p$$+$Au collisions is a factor of three larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed $A$ dependence.

1 data table

Forward neutron $A_N$ in $p$+$A$ collisions for $A$ = 1 ($p$), 27 (Al), and 197 (Au), for ZDC inclusive, ZDC $\otimes$ BBC-tag, and ZDC $\otimes$ BBC-veto triggered samples. The 3% scale uncertainty is from the polarization normalization uncertaintiy.


B-meson production at forward and backward rapidity in $p$+$p$ and Cu+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV

The PHENIX collaboration Aidala, C. ; Ajitanand, N.N. ; Akiba, Y. ; et al.
Phys.Rev.C 96 (2017) 064901, 2017.
Inspire Record 1512141 DOI 10.17182/hepdata.141715

The fraction of $J/\psi$ mesons which come from B-meson decay, $\textrm{F}_{B{\rightarrow}J/\psi}$, is measured for J/$\psi$ rapidity \mbox{$1.2<|y|<2.2$} and $p_T>0$ in $p$+$p$ and Cu+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV with the PHENIX detector. The extracted fraction is $\textrm{F}_{B{\rightarrow}J/\psi}$ = 0.025 $\pm$ 0.006(stat) $\pm$ 0.010(syst) for $p$+$p$ collisions. For Cu+Au collisions, $\textrm{F}_{B{\rightarrow}J/\psi}$ is 0.094 $\pm$ 0.028(stat) $\pm$ 0.037(syst) in the Au-going direction ($-2.2<y<-1.2$) and 0.089 $\pm$ 0.026(stat) $\pm$ 0.040(syst) in the Cu-going direction ($1.2<y<2.2$). The nuclear modification factor, $R_{\rm CuAu}$, of B mesons in Cu+Au collisions is consistent with binary scaling of measured yields in $p$+$p$ at both forward and backward rapidity.

4 data tables

Differential cross section for $p$+$p$ $\rightarrow$ $b\bar{b}$ at $\sqrt{s}$ = 200 GeV.

Fraction F$_{B \rightarrow J/\psi}$ of $B$-meson decays in the inclusive $J/\psi$ sample in $p$+$p$ and Cu+Au collisions at $sqrt{s_{NN}}$ = 200 GeV versus rapidity along with a theoretical estimation based on fixed-order plus next-to-leading logs (FONLL) for the $B \rightarrow J/\psi$ cross section and Color-Evaporation-Model (CEM) for the prompt $J/\psi$.

Fraction F$_{B \rightarrow J/\psi}$ of $B$-meson decays in the inclusive $J/\psi$ sample in $p$+$p$ and Cu+Au collisions at $sqrt{s_{NN}}$ = 200 GeV versus rapidity along with a theoretical estimation based on fixed-order plus next-to-leading logs (FONLL) for the $B \rightarrow J/\psi$ cross section and Color-Evaporation-Model (CEM) for the prompt $J/\psi$.

More…

Measurement of the beam asymmetry $\Sigma$ for $\pi^0$ and $\eta$ photoproduction on the proton at $E_\gamma = 9$ GeV

The GlueX collaboration Al Ghoul, H. ; Anassontzis, E.G. ; Austregesilo, A. ; et al.
Phys.Rev.C 95 (2017) 042201, 2017.
Inspire Record 1511149 DOI 10.17182/hepdata.76745

We report measurements of the photon beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\to p\pi^0$ and $\vec{\gamma}p\to p\eta $ from the GlueX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $\pi^0$ measurements and are the first $\eta$ measurements in this energy regime. The results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.

2 data tables

Measurement of the beam asymmetry $\Sigma$ for $\pi^0$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.

Measurement of the beam asymmetry $\Sigma$ for $\eta$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.


Angular decay coefficients of $J/\psi$ mesons at forward rapidity from $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 95 (2017) 092003, 2017.
Inspire Record 1505176 DOI 10.17182/hepdata.141939

We report the first measurement of the full angular distribution for inclusive $J/\psi\rightarrow\mu^{+}\mu^{-}$ decays in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV. The measurements are made for $J/\psi$ transverse momentum $2<p_{T}<10$ GeV/$c$ and rapidity $1.2<y<2.2$ in the Helicity, Collins-Soper, and Gottfried-Jackson reference frames. In all frames the polar coefficient $\lambda_{\theta}$ is strongly negative at low $p_{T}$ and becomes close to zero at high $p_{T}$, while the azimuthal coefficient $\lambda_{\phi}$ is close to zero at low $p_{T}$, and becomes slightly negative at higher $p_{T}$. The frame-independent coefficient $\tilde{\lambda}$ is strongly negative at all $p_{T}$ in all frames. The data are compared to the theoretical predictions provided by nonrelativistic quantum chromodynamics models.

4 data tables

Polar angular decay coefficient $\lambda_{\theta}$ as a function of transverse momentum for four reference frames and three $p_T$ bins. The numbers in the CS frame for the $p_T$ = 2-3 GeV/$c$ bin are 90% confidence level upper limits.

"Mixed" angular decay coefficient $\lambda_{\theta \phi}$ as a function of transverse momentum for four reference frames and three $p_T$ bins.

Azimuthal angular decay coefficient $\lambda_{\phi}$ as a function of transverse momentum for four reference frames and three $p_T$ bins.

More…

Final COMPASS results on the deuteron spin-dependent structure function $g_1^{\rm d}$ and the Bjorken sum rule

The COMPASS collaboration Adolph, C. ; Aghasyan, M. ; Akhunzyanov, R. ; et al.
Phys.Lett.B 769 (2017) 34-41, 2017.
Inspire Record 1501480 DOI 10.17182/hepdata.78374

Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a $^6$LiD target. The data were taken at $160~{\rm GeV}$ beam energy and the results are shown for the kinematic range $1~({\rm GeV}/c)^2 < Q^2 < 100~({\rm GeV}/c)^2$ in photon virtuality, $0.004<x<0.7$ in the Bjorken scaling variable and $W > 4~{\rm GeV}/c^2$ in the mass of the hadronic final state. The deuteron double-spin asymmetry $A_1^{\rm d}$ and the deuteron longitudinal-spin structure function $g_1^{\rm d}$ are presented in bins of $x$ and $Q^2$. Towards lowest accessible values of $x$, $g_1^{\rm d}$ decreases and becomes consistent with zero within uncertainties. The presented final $g_1^{\rm d}$ values together with the recently published final $g_1^{\rm p}$ values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the $g_1$ world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge $a_0$, {which is identified in the $\overline{\rm MS}$ renormalisation scheme with the total contribution of quark helicities to the nucleon spin}, is extracted from only the COMPASS deuteron data with negligible extrapolation uncertainty: $a_0 (Q^2 = 3~({\rm GeV}/c)^2) = 0.32 \pm 0.02_{\rm stat} \pm0.04_{\rm syst} \pm 0.05_{\rm evol}$. Together with the recent results on the proton spin structure function $g_1^{\rm p}$, the results on $g_1^{\rm d}$ constitute the COMPASS legacy on the measurements of $g_1$ through inclusive spin-dependent deep inelastic scattering.

6 data tables

Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in $x$ bins averaged over $Q^2$.

Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in (x, $Q^2$) bins.

Values of $g_1^{NS}$ for the COMPASS data in $x$ bins averaged over $Q^2$.

More…

Measurement of the relative yields of $\psi(2S)$ to $\psi(1S)$ mesons produced at forward and backward rapidity in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 95 (2017) 034904, 2017.
Inspire Record 1487575 DOI 10.17182/hepdata.149529

The PHENIX Collaboration has measured the ratio of the yields of $\psi(2S)$ to $\psi(1S)$ mesons produced in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV over the forward and backward rapidity intervals $1.2<|y|<2.2$. We find that the ratio in $p$$+$$p$ collisions is consistent with measurements at other collision energies. In collisions with nuclei, we find that in the forward ($p$-going or $^{3}$He-going) direction, the relative yield of $\psi(2S)$ mesons to $\psi(1S)$ mesons is consistent with the value measured in \pp collisions. However, in the backward (nucleus-going) direction, the $\psi(2S)$ is preferentially suppressed by a factor of $\sim$2. This suppression is attributed in some models to breakup of the weakly-bound $\psi(2S)$ through final state interactions with comoving particles, which have a higher density in the nucleus-going direction. These breakup effects may compete with color screening in a deconfined quark-gluon plasma to produce sequential suppression of excited quarkonia states.

9 data tables

Summary of the measured ratios of $\Psi$(2S)/$\Psi$(1S) mesons.

Summary of the measured ratios of $\Psi$(2S)/$\Psi$(1S) mesons.

Summary of the measured ratios of $\Psi$(2S)/$\Psi$(1S) mesons.

More…

Nonperturbative-transverse-momentum effects and evolution in dihadron and direct photon-hadron angular correlations in $p$$+$$p$ collisions at $\sqrt{s}$=510 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 95 (2017) 072002, 2017.
Inspire Record 1486678 DOI 10.17182/hepdata.143252

Dihadron and isolated direct photon-hadron angular correlations are measured in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV. Correlations of charged hadrons of $0.7<p_T<10$ GeV/$c$ with $\pi^0$ mesons of $4<p_T<15$ GeV/$c$ or isolated direct photons of $7<p_T<15$ GeV/$c$ are used to study nonperturbative effects generated by initial-state partonic transverse momentum and final-state transverse momentum from fragmentation. The nonperturbative behavior is characterized by measuring the out-of-plane transverse momentum component $p_{\rm out}$ perpendicular to the axis of the trigger particle, which is the high-$p_T$ direct photon or $\pi^0$. Nonperturbative evolution effects are extracted from Gaussian fits to the away-side inclusive-charged-hadron yields for different trigger-particle transverse momenta ($p_T^{\rm trig}$). The Gaussian widths and root mean square of $p_{\rm out}$ are reported as a function of the interaction hard scale $p_T^{\rm trig}$ to investigate possible transverse-momentum-dependent evolution differences between the $\pi^0$-h$^\pm$ and direct photon-h$^\pm$ correlations and factorization breaking effects. The widths are found to decrease with $p_T^{\rm trig}$, which indicates that the Collins-Soper-Sterman soft factor is not driving the evolution with the hard scale in nearly back-to-back dihadron and direct photon-hadron production in $p$$+$$p$ collisions. This behavior is in contrast to Drell-Yan and semi-inclusive deep-inelastic scattering measurements.

12 data tables

Per-trigger yield of charged hadrons shown as a function of the azimuthal angle between the $\pi^0$ trigger particle and associated charged hadron.

Per-trigger yield of charged hadrons shown as a function of the azimuthal angle between the direct photon trigger particle and associated charged hadron.

$\pi^0$-h$^{\pm}$ $\sqrt{\langle p^2_{out} \rangle}$ values from fits to the $\Delta \phi$ correlations.

More…

Measurement of long-range angular correlations and azimuthal anisotropies in high-multiplicity $p+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.C 95 (2017) 034910, 2017.
Inspire Record 1486072 DOI 10.17182/hepdata.145924

We present the first measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow $v_2$ in high-multiplicity $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. A comparison of these results with previous measurements in high-multiplicity $d$$+$Au and $^3{\rm He}$$+$Au collisions demonstrates a relation between $v_2$ and the initial collision eccentricity $\varepsilon_2$, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured $v_2$ and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on momentum-space domain correlations is presented. The set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.

2 data tables

The ratio of the two harmonics ($\Sigma Q^{BBC-S}$)$_{p+p}$/($\Sigma Q^{BBC-S}$)$_{pAu}$.

$v_2$ of charged hadrons within $|\eta|$ < 0.35 in 0-5% $p$+Au central collisions, compared to hydrodynamic calculations using the SONIC model, matched to the same multiplicity as the data.


Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target

The COMPASS collaboration Adolph, C. ; Agarwala, J. ; Aghasyan, M. ; et al.
Phys.Lett.B 767 (2017) 133-141, 2017.
Inspire Record 1483098 DOI 10.17182/hepdata.77892

Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6 LiD target. They cover the kinematic domain 1 (GeV/c)2 < Q2 < 60 (GeV/c)^2 in the photon virtuality, 0.004 < x < 0.4, 0.1 < y < 0.7, 0.20 < z < 0.85, and W > 5 GeV/c^2 in the invariant mass of the hadronic system. The results from the sum of the z-integrated K+ and K- multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.

2 data tables

Multiplicities of positively charged kaons from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{K^{+}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the kaon count, $DVM^{K^{+}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the kaon count, $\eta^{K^{+}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{K^{+}}$, as follows: $M^{K^{+}}$ = $M_{raw}^{K^{+}}$ * $\frac{\eta^{K^{+}}} {\eta^{DIS}}$ * $\frac{ DVM^{K^{+}} } {DVM^{DIS} }$.

Multiplicities of negatively charged kaons from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{K^{-}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the kaon count, $DVM^{K^{-}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the kaon count, $\eta^{K^{-}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{K^{-}}$, as follows: $M^{K^{-}}$ = $M_{raw}^{K^{-}}$ * $\frac{\eta^{K^{-}}} {\eta^{DIS}}$ * $\frac{ DVM^{K^{-}} } {DVM^{DIS} }$.


Photon asymmetry measurements of $\overrightarrow{\gamma} \mathrm{p} \rightarrow \pi^{0} \mathrm{p}$ for E$_{\gamma}$=320$-$650 MeV

The MAINZ-A2 collaboration Gardner, S. ; Howdle, D. ; Sikora, M.H. ; et al.
Eur.Phys.J.A 52 (2016) 333, 2016.
Inspire Record 1472369 DOI 10.17182/hepdata.129289

High statistics measurements of the photon asymmetry $\mathrm{\Sigma}$ for the $\overrightarrow{\gamma}$p$\rightarrow\pi^{0}$p reaction have been made in the center of mass energy range W=1214-1450 MeV. The data were measured with the MAMI A2 real photon beam and Crystal Ball/TAPS detector systems in Mainz, Germany. The results significantly improve the existing world data and are shown to be in good agreement with previous measurements, and with the MAID, SAID, and Bonn-Gatchina predictions. We have also combined the photon asymmetry results with recent cross-section measurements from Mainz to calculate the profile functions, $\check{\mathrm{\Sigma}}$ (= $\sigma_{0}\mathrm{\Sigma}$), and perform a moment analysis. Comparison with calculations from the Bonn-Gatchina model shows that the precision of the data is good enough to further constrain the higher partial waves, and there is an indication of interference between the very small $F$-waves and the $N(1520) 3/2^{-}$ and $N(1535) 1/2^{-}$ resonances.

78 data tables

Photon beam asymmetry Sigma at W=1.2159988 GeV

Photon beam asymmetry Sigma at W=1.2194968 GeV

Photon beam asymmetry Sigma at W=1.2225014 GeV

More…

Measurements of double-helicity asymmetries in inclusive $J/\psi$ production in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 94 (2016) 112008, 2016.
Inspire Record 1467456 DOI 10.17182/hepdata.82575

We report the double helicity asymmetry, $A_{LL}^{J/\psi}$, in inclusive $J/\psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $\sqrt{s}=510$ GeV longitudinally polarized $p

1 data table

$A_{LL}^{J/\psi}$ as a function of $p_T$ or $|y|$. $N_{J/\psi}^{2\sigma}$ is the $J/\psi$ counting within its $2\sigma$ mass window. The column of Type A systematic uncertainties are a statistically weighted quadratic combination of the background fraction and run grouping uncertainties. $\Delta A_{LL}$ (Rel. Lumi.) is the global systematic uncertainty from relative luminosity measurements. $\Delta A_{LL}$ (Polarization) is the systematic uncertainty from the beam polarization measurement: a zero indicates an uncertainty $< 0.001$.


Study of the process $e^+ e^- \to K^0_{S}K^0_{L}$ in the center-of-mass energy range 1004--1060 MeV with the CMD-3 detector at the VEPP-2000 $e^+ e^-$ collider

The CMD-3 collaboration Kozyrev, E.A. ; Solodov, E.P. ; Amirkhanov, A.N. ; et al.
Phys.Lett.B 760 (2016) 314-319, 2016.
Inspire Record 1444990 DOI 10.17182/hepdata.78538

The $e^+ e^- \to K^0_{S}K^0_{L}$ cross section has been measured in the center-of-mass energy range 1004--1060 MeV at 25 energy points using $6.1 \times 10^5$ events with $K^0_{S}\to \pi^+\pi^-$ decay. The analysis is based on 5.9 pb$^{-1}$ of an integrated luminosity collected with the CMD-3 detector at the VEPP-2000 $e^+ e^-$ collider. To obtain $\phi(1020)$ meson parameters the measured cross section is approximated according to the Vector Meson Dominance model as a sum of the $\rho, \omega, \phi$-like amplitudes and their excitations. This is the most precise measurement of the $e^+ e^- \to K^0_{S}K^0_{L}$ cross section with a 1.8\% systematic uncertainty.

1 data table

The c.m. energy $E_{\rm c.m.}$, number of selected signal events $N$, detection efficiency $\epsilon_{\rm MC}$, radiative-correction factor 1 + $\delta_{\rm rad.}$, integrated luminosity $L$, and Born cross section $\sigma$ of the process $e^+ e^- \to K^0_{S}K^0_{L}$.


Inclusive cross section and double-helicity asymmetry for $\pi^{0}$ production at midrapidity in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 93 (2016) 011501, 2016.
Inspire Record 1396712 DOI 10.17182/hepdata.144863

PHENIX measurements are presented for the cross section and double-helicity asymmetry ($A_{LL}$) in inclusive $\pi^0$ production at midrapidity from $p$$+$$p$ collisions at $\sqrt{s}=510$~GeV from data taken in 2012 and 2013 at the Relativistic Heavy Ion Collider. The next-to-leading-order perturbative-quantum-chromodynamics theory calculation is in excellent agreement with the presented cross section results. The calculation utilized parton-to-pion fragmentation functions from the recent DSS14 global analysis, which prefer a smaller gluon-to-pion fragmentation function. The $\pi^{0}A_{LL}$ results follow an increasingly positive asymmetry trend with $p_T$ and $\sqrt{s}$ with respect to the predictions and are in excellent agreement with the latest global analysis results. This analysis incorporated earlier results on $\pi^0$ and jet $A_{LL}$, and suggested a positive contribution of gluon polarization to the spin of the proton $\Delta G$ for the gluon momentum fraction range $x>0.05$. The data presented here extend to a currently unexplored region, down to $x\sim0.01$, and thus provide additional constraints on the value of $\Delta G$. The results confirm the evidence for nonzero $\Delta G$ using a different production channel in a complementary kinematic region.

2 data tables

The neutral pion production cross section at midrapidity in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV as a function of $p_T$ and NLO pQCD calculations for theory scales $\mu = p_T/2$ (dotted line), $p_T$ (solid line) and 2$p_T$ (dashed line), with $\mu$ representing equal factorization, renormalization, and fragmentation scales.

$A_{LL}$ with point-to-point uncertainty $\delta A_{LL}$ vs $p_T$ for $\pi^0$ production at midrapidity in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV. Not included in the figure/table are the correlated for all points scale systematic uncertainty of 6.5% (scales both the values and point-to-point uncertainties by the same factor). Correlated relative luminosity (shift) uncertainity of 3.6e-4 (shifts all points by the same value).


Measurement of the $e^+e^- \to K^+K^-\pi^+\pi^-$ cross section with the CMD-3 detector at the VEPP-2000 collider

Shemyakin, D.N. ; Fedotovich, G.V. ; Akhmetshin, R.R. ; et al.
Phys.Lett.B 756 (2016) 153-160, 2016.
Inspire Record 1395968 DOI 10.17182/hepdata.76553

The process $e^+e^- \to K^+K^-\pi^+\pi^-$ has been studied in the center-of-mass energy range from 1500 to 2000\,MeV using a data sample of 23 pb$^{-1}$ collected with the CMD-3 detector at the VEPP-2000 $e^+e^-$ collider. Using about 24000 selected events, the $e^+e^- \to K^+K^-\pi^+\pi^-$ cross section has been measured with a systematic uncertainty decreasing from 11.7\% at 1500-1600\,MeV to 6.1\% above 1800\,MeV. A preliminary study of $K^+K^-\pi^+\pi^-$ production dynamics has been performed.

1 data table

Center-of-mass energy, integrated luminosity, number of four-track events, number of three-track events, detection efficiency, radiative correction and Born cross section of the process $e^{+}e^{-} \to K^{+} K^{-} \pi^{+} \pi^{-}$. Errors are statistical only.


Azimuthally anisotropic emission of low-momentum direct photons in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 94 (2016) 064901, 2016.
Inspire Record 1394895 DOI 10.17182/hepdata.143116

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd and 3rd order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of $0.4<p_{T}<4.0$ GeV/$c$. At low $p_T$ the second-order coefficients, $v_2$, are similar to the ones observed in hadrons. Third order coefficients, $v_3$, are nonzero and almost independent of centrality. These new results on $v_2$ and $v_3$, combined with previously published results on yields, are compared to model calculations that provide yields and asymmetries in the same framework. Those models are challenged to explain simultaneously the observed large yield and large azimuthal anisotropies.

2 data tables

Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the conversion method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).

Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the calorimeter method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).


Measurements of directed, elliptic, and triangular flow in Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 94 (2016) 054910, 2016.
Inspire Record 1394897 DOI 10.17182/hepdata.146752

Measurements of anisotropic flow Fourier coefficients ($v_n$) for inclusive charged particles and identified hadrons $\pi^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ produced at midrapidity in Cu+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV are presented. The data were collected in 2012 by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). The particle azimuthal distributions with respect to different order symmetry planes $\Psi_n$, for $n$~=~1, 2, and 3 are studied as a function of transverse momentum $p_T$ over a broad range of collisions centralities. Mass ordering, as expected from hydrodynamic flow, is observed for all three harmonics. The charged-particle results are compared to hydrodynamical and transport model calculations. We also compare these Cu$+$Au results with those in Cu$+$Cu and Au$+$Au collisions at the same $\sqrt{s_{_{NN}}}$, and find that the $v_2$ and $v_3$, as a function of transverse momentum, follow a common scaling with $1/(\varepsilon_n N_{\rm part}^{1/3})$.

37 data tables

$v_1$ ($p_T$) for charged hadrons measured with respect to the Cu spectator neutrons at midrapidity in Cu + Au collisions at $\sqrt{S_{NN}}$ 200 GeV.

$v_2(p_T)$ for charged hadrons measured at midrapidity in Cu + Au collisions at $\sqrt{S_N{N}}$ = 200 GeV.

$v_3(p_T)$ for charged hadrons measured at midrapidity in Cu + Au collisions at $\sqrt{S_N{N}}$ = 200 GeV.

More…

Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}}=7.7$ to 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 024901, 2016.
Inspire Record 1394433 DOI 10.17182/hepdata.96601

Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems.

28 data tables

Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV

More…

Scaling properties of fractional momentum loss of high-pT hadrons in nucleus-nucleus collisions at $\sqrt{s_{_{NN}}}$ from 62.4 GeV to 2.76 TeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 024911, 2016.
Inspire Record 1394434 DOI 10.17182/hepdata.142336

Measurements of the fractional momentum loss ($S_{\rm loss}\equiv{\delta}p_T/p_T$) of high-transverse-momentum-identified hadrons in heavy ion collisions are presented. Using $\pi^0$ in Au$+$Au and Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=62.4$ and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb$+$Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of $S_{\rm loss}$ as a function of a number of variables: the number of participants, $N_{\rm part}$, the number of quark participants, $N_{\rm qp}$, the charged-particle density, $dN_{\rm ch}/d\eta$, and the Bjorken energy density times the equilibration time, $\varepsilon_{\rm Bj}\tau_{0}$. We find that the $p_T$ where $S_{\rm loss}$ has its maximum, varies both with centrality and collision energy. Above the maximum, $S_{\rm loss}$ tends to follow a power-law function with all four scaling variables. The data at $\sqrt{s_{_{NN}}}$=200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of $S_{\rm loss}$ with $dN_{\rm ch}/d\eta$ and $\varepsilon_{\rm Bj}\tau_{0}$, lending insight on the physics of parton energy loss.

14 data tables

Global variables for Au+Au collisions at RHIC from PHENIX.

Global variables for Au+Au collisions at RHIC from PHENIX.

Global variables for Cu+Cu collisions at RHIC from PHENIX.

More…

$\phi$ meson production in the forward/backward rapidity region in Cu$+$Au collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 024904, 2016.
Inspire Record 1394228 DOI 10.17182/hepdata.142075

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured $\phi$ meson production and its nuclear modification in asymmetric Cu$+$Au heavy-ion collisions at $\sqrt{s_{NN}}=200$ GeV at both forward Cu-going direction ($1.2<y<2.2$) and backward Au-going direction ($-2.2<y<-1.2$), rapidities. The measurements are performed via the dimuon decay channel and reported as a function of the number of participating nucleons, rapidity, and transverse momentum. In the most central events, 0\%--20\% centrality, the $\phi$ meson yield integrated over $1<p_T<5$ GeV/$c$ prefers a smaller value, which means a larger nuclear modification, in the Cu-going direction compared to the Au-going direction. Additionally, the nuclear-modification factor in Cu$+$Au collisions averaged over all centrality is measured to be similar to the previous PHENIX result in $d$$+$Au collisions for these rapidities.

7 data tables

Invariant yield as a function of the number of participating nucleons for 1.2 < $|y|$ < 2.2 and 1 < $p_T$ < 5 GeV/$c$. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

Invariant yield as a function of transverse momentum for 1.2 < $|y|$ < 2.2 and 0%–93% centrality. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

Invariant yield as a function of rapidity for 1 < $p_T$ < 5 GeV/$c$ and 0%–93% centrality. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

More…

Forward $J/\psi$ production in U$+$U collisions at $\sqrt{s_{NN}}$=193 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 034903, 2016.
Inspire Record 1393789 DOI 10.17182/hepdata.144239

The invariant yields for $J/\psi$ production at forward rapidity $(1.2<|y|<2.2)$ in U$+$U collisions at $\sqrt{s_{_{NN}}}$=193 GeV have been measured as a function of collision centrality. The invariant yields and nuclear-modification factor $R_{AA}$ are presented and compared with those from Au$+$Au collisions in the same rapidity range. Additionally, the direct ratio of the invariant yields from U$+$U and Au$+$Au collisions within the same centrality class is presented, and used to investigate the role of $c\bar{c}$ coalescence. Two different parameterizations of the deformed Woods-Saxon distribution were used in Glauber calculations to determine the values of the number of nucleon-nucleon collisions in each centrality class, $N_{\rm coll}$, and these were found to give significantly different $N_{\rm coll}$ values. Results using $N_{\rm coll}$ values from both deformed Woods-Saxon distributions are presented. The measured ratios show that the $J/\psi$ suppression, relative to binary collision scaling, is similar in U$+$U and Au$+$Au for peripheral and midcentral collisions, but that $J/\psi$ show less suppression for the most central U$+$U collisions. The results are consistent with a picture in which, for central collisions, increase in the $J/\psi$ yield due to $c\bar{c}$ coalescence becomes more important than the decrease in yield due to increased energy density. For midcentral collisions, the conclusions about the balance between $c\bar{c}$ coalescence and suppression depend on which deformed Woods-Saxon distribution is used to determine $N_{\rm coll}$.

5 data tables

Centrality parameters $N_{part}$ and $N_{coll}$ in U+U and Au+Au collisions, estimated using the Glauber model.

The nuclear-modification factor, $R_{AA}$, measured as a function of collision centrality ($N_{part}$) for $J/\psi$ at forward rapidity in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV.

Invariant yield measured as a function of collision centrality for $J/\psi$ at forward rapidity for U+U and Au+Au collisions.

More…

Version 3
Single electron yields from semileptonic charm and bottom hadron decays in Au$+$Au collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 034904, 2016.
Inspire Record 1393529 DOI 10.17182/hepdata.99752

The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy-flavor production in minimum bias Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy-flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks due to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au$+$Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV and find the fractions to be similar within the large uncertainties on both measurements for $p_T>4$ GeV/$c$. We use the bottom electron fractions in Au$+$Au and $p$$+$$p$ along with the previously measured heavy flavor electron $R_{AA}$ to calculate the $R_{AA}$ for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region $3<p_T<4$ GeV/$c$.

4 data tables

Bottom and charm hadron invariant yields as a function of $p_{T}$.

Bottom hadron fraction with respect to heavy flavor electron as a function of $p_{T}$.

Bottom and charm hadron $R_{AA}$ as a function of $p_{T}$.

More…

Dielectron production in Au$+$Au collisions at $\sqrt{s_{NN}}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 014904, 2016.
Inspire Record 1393530 DOI 10.17182/hepdata.143067

We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair transverse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The \ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair \pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3\pm0.4({\rm stat})\pm0.4({\rm syst})\pm0.2^{\rm model}$ or to $1.7\pm0.3({\rm stat})\pm0.3({\rm syst})\pm0.2^{\rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {\sc pythia} or {\sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $\rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.

2 data tables

Cocktail of hadronic sources for the 2010 run using the PYTHIA generator for the open heavy flavor contributions.

Invariant mass spectrum of $e^+e^-$ pairs in MB Au+Au collisions within the PHENIX acceptance compared to the cocktail of expected decays.


Observation of correlations between $\pi^{-}$ and proton multiplicities in inelastic collisions of $p$, $d$, He, and C with tantalum nuclei at 2-10 GeV/c per nucleon

Angelov, N. ; Armutlyski, D. ; Akhababyan, N.O. ; et al.
Sov.J.Nucl.Phys. 32 (1980) 819-823, 1980.
Inspire Record 1392856 DOI 10.17182/hepdata.17891

None

5 data tables

No description provided.

No description provided.

No description provided.

More…

Energy dependence of the spin-spin correlation parameter $C_{NN}$ at 50° and 90° c.m. for pp-elastic scattering in the energy range 0.69–0.95 GeV

Efimovyh, V.A. ; Kovalev, A.I. ; Poljakov, V.V. ; et al.
Phys.Lett.B 99 (1981) 28-32, 1981.
Inspire Record 1389635 DOI 10.17182/hepdata.27135

The spin-spin correlation parameter C NN at 50° and 90° c.m. for elastic pp-scattering has been obtained in the energy range 0.69–0.95 GeV. It was found that the parameter C NN (90°) shows resonance-like structure at energies near 700 MeV. Its energy dependence does not agree with Hoshizaki's phase-shift analysis predictions. C NN (50°) agrees well with these predictions and does not show any structure within the accuracy of the measurements.

1 data table

No description provided.


Study of the process $e^+e^-\to p\bar{p}$ in the c.m. energy range from threshold to 2 GeV with the CMD-3 detector

The CMD-3 collaboration Akhmetshin, R.R. ; Amirkhanov, A.N. ; Anisenkov, A.V. ; et al.
Phys.Lett.B 759 (2016) 634-640, 2016.
Inspire Record 1385598 DOI 10.17182/hepdata.73805

Using a data sample of 6.8 pb$^{-1}$ collected with the CMD-3 detector at the VEPP-2000 $e^+e^-$ collider we select about 2700 events of the $e^+e^- \to p\bar{p}$ process and measure its cross section at 12 energy ponts with about 6\% systematic uncertainty. From the angular distribution of produced nucleons we obtain the ratio $|G_{E}/G_{M}| = 1.49 \pm 0.23 \pm 0.30$.

2 data tables

The c.m. energy, beam energy shift, luminosity, number of selected $e^+e^- \to p\bar{p}$ events, detection efficiency, radiative correction, and cross section with statistical and systematic errors. The data for collinear type events.

The c.m. energy, luminosity, number of signal events, fraction of antiprotons stopped in beam pipe and DC inner shell, efficiency, cross section with statistical and systematic errors, for annihilation events.