Measurements were made of the cross section of the reactions π − p → ν ′(958)n, η ′ → 2 γ at momenta at 15, 20, 25, 30 and 40 GeV/c. The experiment was carried out on the IHEP 70 GeV accelerator using the 648 channel hodoscope spectrometer NICE for γ-ray detection. A total of 6000 η′ mesons were recorded. A sharp drop is seen in the differential cross section for t → 0. The dependences of the differential cross sections for the π − p → η ′n and π − p → η n on t are identical. On the basis of the ratio of the cross sections for these reactions at t = 0, i.e. R( η′ n ) t=0 = 0.55 ± 0.06 , the singlet-octet mixing angle for pseudoscalar mesons was determined to be β = −(18.2 ± 1.4)°.
.
AVERAGE RATIO IS 2.76 +- 0.07 PCT.
AVERAGE RATIO IS 0.52 +- 0.02.
A sample of about 230000 events of the reaction pi /sup -/p to pi /sup +/ pi /sup -/n, measured with a magnetic forward spectrometer set up in an unseparated pi /sup -/ beam with a momentum of 63 GeV/c at the SPS has been analysed in terms of one pion exchange. The elastic pi /sup +/ pi /sup -/ cross section has been determined using an extrapolation to the pion pole in the mass range up to m( pi /sup +/ pi /sup -/)=4 GeV. The total pi /sup +/ pi /sup -/ cross section is obtained via the optical theorem. (7 refs).
INTEGRATED 2- S-WAVE INTENSITY FOR 1500 TO 1800 MEV, INCLUDING SIGNIFICANT BACKGROUND.
No description provided.
No description provided.
We have measured in a single experimental setup, the differential cross sections and decay angular distributions of the Y ∗ (1385) produced in the two line-reversed reactions: π + p → K + Y ∗+ (1385) (279 events/ω b ) and K − p → π − Y ∗+ (1385) (190 events/ωb) at 11.5 GeV/ c . The data have been derived from a triggered bubble-chamber experiment using the SLAC Hybrid Facility. We find the differential cross sections and Y ∗ polarizations for the two reactions to be in agreement with exchange-degeneracy predictions, if kinematic differences are taken into account. The Stodolsky-Sakurai and additive quark model predictions are in agreement with the main features of the decay angular distributions of the Y ∗ (1385), except for small violations at low momentum transfer, which can be associated with a finite helicity non-flip contribution in the forward direction.
Axis error includes +- 10/10 contribution.
THESE FINAL DIFFERENTIAL CROSS SECTIONS ARE INCLUDED IN THE RECORD OF J. BALLAM ET AL., PRL 41, 676 (1978).
TRANSVERSITY AMPLITUDES FOR SIG(1385P13)+ PRODUCTION. THE IMAGINARY PARTS OF T(11) AND T(-1-1) WERE ARBITRARILY FIXED AT ZERO.
Results of two spark chamber experiments on A 2 − production in the reaction π − p → K − K S 0 (→ π + π − )p at 9.8 and 18.8 GeV are presented. Decay angular distributions and differential cross sections are given, and the energy dependence of the cross section σ [ π − p → A 2 − (→ K − K 0 )p] is compared with results from π − p → A 2 − (→ 3 π )p.
FITS WITH CONSTANT BACKGROUNDS. A TWO-PARAMETER LINEAR BACKGROUND GIVES MUCH LARGER ERRORS.
INTEGRATED OVER M(K AK) = 1.20 TO 1.42 GEV.
No description provided.
None
FOR THE FPRIME A PURE 2+ STATE IS ASSUMED AND ONLY JZ=+1,0,-1 CONTRIBUTIONS ARE CONSIDERED.
No description provided.
No description provided.
A partial-wave analysis of the (3 π ) 0 system produced peripherally in the reaction K − p → π + π − π 0 Λ at 4.2 GeV/ c is presented. The observation of the weak Λ decay allows a determination of all the transversity production amplitudes except for two phases. The production of known resonances having decay modes other than 3 π is used to test the isobar model ansatz. Significant ω(783), φ(1020) and A 2 (1310) production is observed. The spin parity of the ω ∗ (1675) is established as 3 − . No evidence for production of other resonances, such as axial vector-mesons, is found.
No description provided.
The reaction p p → K ∗ K does not exhibit any s -channel resonance effect between 1 and 2.5 GeV/ c . On the contrary, the data on p p → K ∗∓ K ± are compatible with an exchange mechanism in the t - and u -channels above 1.5 GeV/ c . Strong similarities are found with p p → K − K + and K ∗− K ∗+ . The polarisation of K ∗± is given. The reaction p p → K ∗0 K 0 vanishes above 1.5 GeV/ c
No description provided.
LEG(L=0) = SIG/(4*PI).
LEG(L=0) = SIG/(4*PI).
The pπ+π0 and pπ+π+π− final states from π+p interactions at 3.9 GeV/c have been analyzed by the prism-plot technique and the following three quasi-two-body channels have been studied in detail: π+p→ρ+p, π+p→π0Δ++, and π+p→ρ0Δ++. Results are presented on cross sections, differential cross sections, and single and joint spin density matrix elements. These are compared with the Dar-Watts-Weisskopf absorption model and Reggeized pion-exchange model predictions. Relations among joint spin density matrix elements for ρ0Δ++ are compared with quark-model predictions.
No description provided.
No description provided.
The reaction π − p → A − 2 p at 3.9 GeV/ c incident momentum is studied using data corresponding to the ϱ ° π − , ηπ − and K δ s K − decay modes of the A − 2 . Unnatural parity exchange is found to be important at this energy. The natural parity exchange component of the differential cross section exhibits structure at t ′ ≈ GeV 2 .
CORRECTED FOR ALL A2(1310)- DECAY MODES.
No description provided.
<RHO0 PI-> DATA.
We have investigated the ρ-meson production mechanism in the three reactions π±p→ρ±p and π−p→ρ0n at 3.9 GeV/c (s=8.2 GeV2) using the prism-plot technique. Differential cross sections at all momentum transfers are presented. A significant backward peak has been found in all three reactions. The differential cross sections for these backward peaks are given and are compared with the equivalent pion elastic and charge-exchange cross sections in the backward direction. Using a linear combination of the three differential cross sections we have isolated the I=0 exchange contribution in the forward direction. This differential cross section has a zero at −t=0.45 (GeV/c)2 and is fitted by the dual absorptive model of Harari with an interaction radius of ∼ 1.2 F. The total I=0 cross section is calculated and compared with similarly determined cross sections at higher momenta. An analysis of the properties of the other possible spin-parity exchanges is also presented.
SLOPE FITTED OVER 0.05 < -T < 0.3 GEV**2.
No description provided.
No description provided.