None
No description provided.
No description provided.
This is the first full solid angle analysis of large transverse energy events in\(p\bar p\) collisions at the CERN collider. Events with transverse energies in excess of 200 GeV at\(\sqrt s= 630 GeV\) are studied for any non-standard physics and quantitatively compared with expectations from perturbative QCD Monte Carlo models. A corrected differential cross section is presented. A detailed examination is made of jet profiles, event jet multiplicities and the fraction of the transverse energy carried by the two jets with the highest transverse jet energies. There is good agreement with standard theory for events with transverse energies up to the largest observed values\(( \approx \sqrt {s/2} )\) and the analysis shows no evidence for any non-QCD mechanism to account for the event characteristics.
No description provided.
From the measurements of the inclusive production ratios between π - , K - and p̄ at Feynman x = 0 in 360 GeV/ c pp interactions and using the predictions of the Lund fragmentation model, we determine the strangeness and diquark suppression factors and find γ s , l = 0.28 ± 0.03 and γ D , l = 0.063 ± 0.011 .
No description provided.
We present results from a high statistics study of the nucleon structure function F 2 ( x , Q 2 ) measured in deep inelastic scattering of muons on carbon in the kinematic range 0.25⩽ x ⩽0.80 and Q 2 ⩾25 GeV 2 . The analysis is based on 1.5×10 6 reconstructed events recorded at beam energies of 120, 200 and 280 GeV. R = σ L / σ T is found to be independent of x in the range 0.25⩽ x ⩽0.07 and 40 GeV 2 ⩽ Q 2 ⩽200 GeV 2 with a mean value R =0.015±0.013 ( stat ) ±0.026 (syst.).
R=SIG(L)/SIG(T).
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
We report on a study ofρ0 andf2 inclusive production in π−−p interactions at 360 GeV/c, using the LEBC-EHS set-up at CERN and reconstructing about 165000 events. Theρ0,f2 andρ30 cross sections are determined forxF>0,xF>0.4 andxF>0.6 respectively and theρ0 andf2 Feynman-x distributions and transverse momentum distributions are presented.
No description provided.
Inclusive Ω− production in e+e− annihilation at 29 GeV has been measured with the Mark II detector. From an integrated luminosity of 207 pb−1, we determine a production rate of 0.014±0.006±0.004 Ω−, Ω¯+ per hadronic event. This is roughly 35 times the Lund-model prediction of 0.0004 Ω−, Ω¯+ per hadronic event, but comparable to the Webber-model prediction of 0.006 Ω−, Ω¯+ per hadronic event. The large rate of Ω− production, compared with production rates for other baryons, and with theoretical predictions based on diquark models, indicates that spin suppression does not hold for Ω− production.
Radiatively corrected inclusive cross section.
Extrapolation to full momentum range.
The spin-spin correlation parameters CLL=(L,L;0,0)=ALL and CSL=(S,L;0,0)=ASL for np elastic scattering were measured for incident polarized-neutron–beam kinetic energies of 484 and 634 MeV over the center-of-mass angles from ≃80° to 180°. The data are important for determining the I=0 nucleon-nucleon amplitudes. These results are compared with phase-shift calculations.
No description provided.
No description provided.
No description provided.
We have studied the energy-energy correlation in e+e− annihilation into hadrons at √s =29 GeV using the Mark II detector at the SLAC storage ring PEP. We find to O(αs2) that αs=0.158±0.003±0.008 if hadronization is described by string fragmentation. Independent fragmentation schemes give αs=0.10–0.14, and give poor agreement with the data. A leading-log shower fragmentation model is found to describe the data well.
Correlation data from the original PEP-5 detector.
Correlation Asymmetry data from the original PEP-5 detector.
Correlation data from the upgraded detector.
Events are analyzed in which a high transverse momentum proton was produced at polar angles of 10°, 20° and 45°. The experiment was performed with the Split Field Magnet detector at the CERN ISR at\(\sqrt s \)=62 GeV. A 4-jet structure of these events is found [1]. The measured charge structure of spectator jets is compatible with proton production from hard diquark scattering. This is supported by a study of baryon number compensation in the towards jets. The observed charge compensation in the towards jets suggests dominance of hard (ud) scattering. Evidence forΔ++ production at high transverse momentum indicates the presence of an additional (uu) scattering component. The properties of the recoiling away jets are compatible with the fragmentation of a valence quark and/or of a gluon as in the case of meson triggers.
No description provided.
No description provided.