None
Axis error includes +- 0.0/0.0 contribution (?////TOTAL SYSTEMATICS).
Axis error includes +- 0.0/0.0 contribution (?////TOTAL SYSTEMATICS).
Axis error includes +- 0.0/0.0 contribution (?////TOTAL SYSTEMATICS).
Properties of the hadron multiplicity distributions in 280 GeV/c μ<sup loc="post">+</sup>p interactions have been investigated. The c.m. energy dependence in the range from 4 to 20 GeV of the total charged multiplicities are presented. No variation faster than logarithmic is seen in the energy range of this experiment. Comparison with νp and <math altimg="si1.gif"><ovl type="bar" style="s">ν</ovl><rm>p</rm></math> data at lower energy has been made and shows good agreement between μ<sup loc="post">+</sup>p and <math altimg="si1.gif"><ovl type="bar" style="s">ν</ovl><rm>p</rm></math> total charged multiplicities. It has been found that the average forward multiplicity (charged hadrons with xF > 0) exceeds the average backward multiplicity (charged hadrons with xF < 0) in the whole energy range and presents a different energy variation. The average forward multiplicity has been compared to e<sup loc="post">+</sup>e<sup loc="post">−</sup> data and shows a similar dependence on energy. Little correlation was observed between the forward and backward multiplicities indicating that the current and target regions fragment almost independently.
No description provided.
No description provided.
No description provided.
We have studied the production of prompt muons in hadronic events from e+e− annihilation at a center-of-mass energy of 29 GeV with the PEP4-TPC (Time Projection Chamber) detector. The muon p and pt distributions are well described by a combination of bottom- and charm-quark decays, with fitted semimuonic branching fractions of (15.2±1.9±1.2)% and (6.9±1.1±1.1)%, respectively. The muon spectra imply hard fragmentation functions for both b and c quarks, with 〈z(b quark)〉=0.80±0.05±0.05 and 〈z(c quark)〉=0.60±0.06±0.04. We derive neutral-current axial-vector couplings of a(b quark)=-0.9±1.1±0.3 and a(c quark)=1.5±1.5±0.5 from the forward-backward asymmetries.
PT is the transverse momentum of the muon relative to the event thrust axis.
PT is the transverse momentum of the MUON relative to the event thrust axis. At this table MUON is from JET and its PT < 1 GeV/c.
PT is the transverse momentum of the MUON relative to the event thrust axis. At this table MUON is from JET and its PT > 1 GeV/c.
The cross sections for J ψ production have been measured in interactions of 280 GeV μ + on hydrogen and deuterium (H, D) and also in interactions of 250 GeV μ + on iron. The single-nucleon cross sections in iron are found to be larger than those in H, D. The mean ratio of the iron to H, D photoproduction cross sections in the range 60 < v < 200 GeV is 1.45 ±0.12 (statistical) ±0.22 (systematic error). Within the framework of the photon-gluon fusion model, this indicates that the gluon density per nucleon is ∼45% larger in iron than in H, D in the range 0.026 < x < 0.085, on a mass scale Q 2 eff ∼M 2 J ψ .
First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.
First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.
THIS TABLE IS THE RATIO OF THE EFFECTIVE GLUON DISTRIBUTIONS IN IRON AND HYDROGEN(DEUTERIUM) ASSUMING THAT PHOTON-GLUON FUSION IS THE RELEVANT MECHANISM FOR J/PSI PRODUCTION.
None
Backward Multiplicity.
Forward Multiplicity.
No description provided.
None
No description provided.
No description provided.
F2(FE)/F2(DEUT) AVERAGED OVER Q2.
Results are presented on the transverse momentum distributions of charged hadrons in 280 GeV muon-proton deep inelastic interactions. The transverse momenta are defined relative to the accurately measured virtual photon direction and the experiment has almost complete angular acceptance for the final state hadrons. Significantly larger values of the average transverse momentum squared are found for the forward going hadrons than for the target remnants. This result, combined with a study of the rapidity region over which the transverse momentum is compensated, can be explained by a significant contribution from soft gluon radiation, but not by a large value of the primordial transverse momentum of the struck quark.
Errors given are statistical only.
Errors are statistical only.
Errors are statistical only.
The production of K 0 s, Λs and Λ s has been studied in a 280 GeV muon-proton scattering experiment with almost complete coverage of all kinematic regions. A study is made of the dependence of the multiplicities on the hadronic centre of mass energy, W , and of the Feynman x distributions. It is found that K 0 and Λ production is mostly central and increases strongly with W , whereas Λ production comes mainly from the remnant target system and is only weakly W dependent.
AVERAGE VALUES OF VARIABLES ARE <Q**2>=12GEV**2 , <NU>=76GEV , <W**2>=130GEV**2 , <X BJ>=0.11.
AVERAGE VALUES OF VARIABLES ARE <Q**2>=12GEV**2 , <NU>=76GEV , <W**2>=130GEV**2 , <X BJ>=0.11.
AVERAGE VALUES OF VARIABLES ARE <Q**2>=12GEV**2 , <NU>=76GEV , <W**2>=130GEV**2 , <X BJ>=0.11.
The measurements of the z and p T 2 distribution of hadrons produced in the interactions of 200 GeV muons with copper and carbon nuclei are shown in different x Bj and virtual photon energy intervals. Effects of the jet scattering are seen at the lowest virtual photon energies while for energies above 70 GeV there is no evidence of these effects. Comparison with a theoretical model indicates that at high jet energies the parton fragmentation distance is greater than the nuclear radius and that the parton absorption cross section is less than 10 mb.
No description provided.
No description provided.
An exposure of BEBC equipped with the hydrogen-filled TST to the v μ wide band beam at the CERN SPS has been used to study v μ interactions on free protons. About neutral induced interactions have been observed inside the hydrogen and separated into charged current, neutral current and neutral hadron interactions using a multivariate discriminant analysis based on the kinematics of the events. The neutral to charged current cross-section ratio has been determined to be R p v = 0.33 ± 0.04 . When combined with the value of R p v previously determined in the same experiment, the result is compatible with the prediction of the standard SU (2) × U (1) model for sin 2 θ W = 0.24 −0.08 +0.06 and ρ = 1.07 −0.08 +0.06 . Fixing the parameter ρ = 1 yields sin 2 θ W = 0.18 ± 0.04.
No description provided.