Presented are the first measurements of the transverse single-spin asymmetries ($A_N$) for neutral pions and eta mesons in $p$+Au and $p$+Al collisions at $\sqrt{s_{_{NN}}}=200$ GeV in the pseudorapidity range $|\eta|<$0.35 with the PHENIX detector at the Relativistic Heavy Ion Collider. The asymmetries are consistent with zero, similar to those for midrapidity neutral pions and eta mesons produced in $p$+$p$ collisions. These measurements show no evidence of additional effects that could potentially arise from the more complex partonic environment present in proton-nucleus collisions.
Data from Figure 2 (a) of the $\pi^{0}$ transverse single-spin asymmetry in $\sqrt{s_{NN}}=200$ GeV $p^{\uparrow}+$Au and $p^{\uparrow}+$Al collisions as a function of $p_{T}$.
Data from Figure 2 (b) of the $\eta$ transverse single-spin asymmetry in $\sqrt{s_{NN}}=200$ GeV $p^{\uparrow}+$Au and $p^{\uparrow}+$Al collisions as a function of $p_{T}$.
Polarized proton-proton collisions provide leading-order access to gluons, presenting an opportunity to constrain gluon spin-momentum correlations within transversely polarized protons and enhance our understanding of the three-dimensional structure of the proton. Midrapidity open-heavy-flavor production at $\sqrt{s}=200$ GeV is dominated by gluon-gluon fusion, providing heightened sensitivity to gluon dynamics relative to other production channels. Transverse single-spin asymmetries of positrons and electrons from heavy-flavor hadron decays are measured at midrapidity using the PHENIX detector at the Relativistic Heavy Ion Collider. These charge-separated measurements are sensitive to gluon correlators that can in principle be related to gluon orbital angular momentum via model calculations. Explicit constraints on gluon correlators are extracted for two separate models, one of which had not been constrained previously.
Data from Figure 1 of open heavy flavor $e^{\pm}$ transverse single-spin asymmetries in transversely polarized p+p collisions as a function of $p_{T}$.
Measurements are presented of electroweak boson production using data from $pp$ collisions at a centre-of-mass energy of $\sqrt{s} = 8\mathrm{\,Te\kern -0.1em V}$. The analysis is based on an integrated luminosity of $2.0\mathrm{\,fb}^{-1}$ recorded with the LHCb detector. The bosons are identified in the $W\rightarrow\mu\nu$ and $Z\rightarrow\mu^{+}\mu^{-}$ decay channels. The cross-sections are measured for muons in the pseudorapidity range $2.0 < \eta < 4.5$, with transverse momenta $p_{\rm T} > 20{\mathrm{\,Ge\kern -0.1em V\!/}c}$ and, in the case of the $Z$ boson, a dimuon mass within $60 < M_{\mu^{+}\mu^{-}} < 120{\mathrm{\,Ge\kern -0.1em V\!/}c^{2}}$. The results are \begin{align*} \sigma_{W^{+}\rightarrow\mu^{+}\nu} &= 1093.6 \pm 2.1 \pm 7.2 \pm 10.9 \pm 12.7{\rm \,pb} \, , \sigma_{W^{-}\rightarrow\mu^{-}\bar{\nu}} &= \phantom{0}818.4 \pm 1.9 \pm 5.0 \pm \phantom{0}7.0 \pm \phantom{0}9.5{\rm \,pb} \, , \sigma_{Z\rightarrow\mu^{+}\mu^{-}} &= \phantom{00}95.0 \pm 0.3 \pm 0.7 \pm \phantom{0}1.1 \pm \phantom{0}1.1{\rm \,pb} \, , \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. The evolution of the $W$ and $Z$ boson cross-sections with centre-of-mass energy is studied using previously reported measurements with $1.0\mathrm{\,fb}^{-1}$ of data at $7\mathrm{\,Te\kern -0.1em V}$. Differential distributions are also presented. Results are in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics.
Inclusive cross-section for $W^+$ and $W^-$ boson production in bins of muon pseudorapidity. The uncertainties are statistical, systematic, beam and luminosity.
Inclusive cross-section for $Z$ boson production in bins of rapidity. The uncertainties are statistical, systematic, beam and luminosity.
Inclusive cross-section for $Z$ boson production in bins of transverse momentum. The uncertainties are statistical, systematic, beam and luminosity.
Associated production of bottomonia and open charm hadrons in $pp$ collisions at $\sqrt{s}=7$ and $8$TeV is observed using data corresponding to an integrated luminosity of 3$fb^{-1}$ accumulated with the LHCb detector. The observation of five combinations, $\Upsilon(1S)D^0$, $\Upsilon(2S)D^0$, $\Upsilon(1S)D^+$, $\Upsilon(2S)D^+$ and $\Upsilon(1S)D^+_{s}$, is reported. Production cross-sections are measured for $\Upsilon(1S)D^0$ and $\Upsilon(1S)D^+$ pairs in the forward region. The measured cross-sections and the differential distributions indicate the dominance of double parton scattering as the main production mechanism. This allows a precise measurement of the effective cross-section for double parton scattering.
Normalized differential cross-section $\frac{1}{\sigma}\frac{ \mathrm{d}\sigma(\Upsilon(1S)D^0)}{\mathrm{d} p_T(\Upsilon(1S))}$ for $2<y(\Upsilon(1S))<4.5$, $2<y(D^0)<4.5$, $p_T(D^0)>1$ GeV/$c$. Only statistical uncertainties are quoted as systematic uncertainties are found to be negligible. The distribution is normalized to unity.
Normalized differential cross-section $\frac{1}{\sigma}\frac{ \mathrm{d}\sigma(\Upsilon(1S)D^+)}{\mathrm{d} p_T(\Upsilon(1S))}$ for $2<y(\Upsilon(1S))<4.5$, $2<y(D^+)<4.5$, $p_T(D^+)>1$ GeV/$c$. Only statistical uncertainties are quoted as systematic uncertainties are found to be negligible. The distribution is normalized to unity.
Normalized differential cross-section $\frac{1}{\sigma}\frac{ \mathrm{d}\sigma(\Upsilon(1S)D^0)}{\mathrm{d} p_T(D^0)}$ for $2<y(\Upsilon(1S))<4.5$, $2<y(D^0)<4.5$, $p_T(D^0)>1$ GeV/$c$. Only statistical uncertainties are quoted as systematic uncertainties are found to be negligible. The distribution is normalized to unity.
The production of $\Upsilon$ mesons in $pp$ collisions at $\sqrt=7$ and $8\,\mathrm{TeV}$ is studied with the LHCb detector using data samples corresponding to an integrated luminosity of $1\,\mathrm{fb}^{-1}$ and $2\,\mathrm{fb}^{-1}$ respectively. The production cross-sections and ratios of cross-sections are measured as functions of the meson transverse momentum $p_T$ and rapidity $y$, for $p_T<30\,\mathrm{GeV}/c$} and $2.0<y<4.5$.
Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)] for $2.0 < y < 2.5$.
Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)] for $2.0 < y < 2.5$.
Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)].
The production of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV is studied with the \lhcb detector. Cross-section measurements are performed as a function of the transverse momentum $p_\mathrm{T}$ and the rapidity $y$ of the $J/\psi$ meson in the region $p_\mathrm{T}<14\mathrm{GeV}/c$ and $2.0<y<4.5$, for both prompt $J/\psi$ mesons and $J/\psi$ mesons from $b$-hadron decays. The production cross-sections integrated over the kinematic coverage are $15.03\pm 0.03\pm 0.94$ $\mu$b for prompt $J/\psi$ and $2.25\pm 0.01\pm 0.14$ $\mu$b for $J/\psi$ from $b$-hadron decays, assuming zero polarization of the $J/\psi$ meson. The first uncertainties are statistical and the second systematic. The cross-section reported for $J/\psi$ mesons from $b$-hadron decays is used to extrapolate to a total $b\bar{b}$ cross-section. The ratios of the cross-sections with respect to $\sqrt{s}=8$ TeV are also determined.
Double differential cross-section for prompt $J/\psi$ mesons as a function of $p_\perp$ in bins of $y$. The first uncertainties are statistical, the second are the correlated systematic uncertainties shared between bins and the last are the uncorrelated systematic uncertainties.
Double differential cross-section for $J/\psi$-from-$b$ mesons as a function of $p_\perp$ in bins of $y$. The first uncertainties are statistical, the second are the correlated systematic uncertainties shared between bins and the last are the uncorrelated systematic uncertainties.
The fraction of $J/\psi$-from-$b$ mesons (in %) in bins of the $J/\psi$ $p_\perp$ and $y$. The uncertainties are statistical only. The systematic uncertainties are negligible.
A measurement of the production cross-section for $Z$ bosons that decay to muons is presented. The data were recorded by the LHCb detector during $pp$ collisions at a centre-of-mass energy of 7 TeV, and correspond to an integrated luminosity of 1.0 fb$^{-1}$. The cross-section is measured for muons in the pseudorapidity range $2.0 < \eta < 4.5$ with transverse momenta $p_{T} > 20$ GeV/c. The dimuon mass is restricted to $60 < M_{\mu^{+}\mu^{-}} < 120$ GeV/c$^{2}$. The measured cross-section is $$\sigma_{Z\rightarrow\mu^{+}\mu^{-}} = (76.0 \pm 0.3 \pm 0.5 \pm 1.0 \pm 1.3) \, \text{pb}$$ where the uncertainties are due to the sample size, systematic effects, the beam energy and the luminosity. This result is in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. The cross-section is also measured differentially as a function of kinematic variables of the $Z$ boson. Ratios of the production cross-sections of electroweak bosons are presented using updated LHCb measurements of $W$ boson production. A precise test of the Standard Model is provided by the measurement of the ratio $$\frac{\sigma_{W^{+}\rightarrow\mu^{+}\nu_{\mu}} + \sigma_{W^{-}\rightarrow\mu^{-}\bar{\nu}_{\mu}}}{\sigma_{Z\rightarrow\mu^{+}\mu^{-}}} = 20.63\pm0.09\pm0.12\pm0.05,$$ where the uncertainty due to luminosity cancels.
Inclusive cross-section for $Z$ boson production in bins of rapidity. The uncertainties are statistical, systematic, beam and luminosity.
Inclusive cross-section for $Z$ boson production in bins of transverse momentum. The uncertainties are statistical, systematic, beam and luminosity.
Inclusive cross-section for $Z$ boson production in bins of PHI*. The uncertainties are statistical, systematic, beam and luminosity.
Production of $B_c^+$ mesons in proton-proton collisions at a center-of-mass energy of 8 TeV is studied with data corresponding to an integrated luminosity of $2.0~{\rm fb}^{-1}$ recorded by the LHCb experiment. The ratio of production cross-sections times branching fractions between the $B_c^+\to J/\psi \pi^+$ and $B^+\to J/\psi K^+$ decays is measured as a function of transverse momentum and rapidity in the regions $0 < p_{\rm T} < 20~{\rm GeV}/c$ and $2.0 < y < 4.5$. The ratio in this kinematic range is measured to be $(0.683\pm0.018\pm0.009)\%$, where the first uncertainty is statistical and the second systematic.
Double differential production ratio $R(p_T, y)$ in bins of $p_T$ and $y$.
Differential production ratio $R(p_T)$ in bins of $p_T$ and integrated over $2.0 < y <4.5$ range.
Differential production ratio $R(y)$ in bins of $y$ and integrated over $0 < p_T < 20$ $GeV/c$ range.
The production of the $\eta_c (1S)$ state in proton-proton collisions is probed via its decay to the $p \bar{p}$ final state with the LHCb detector, in the rapidity range $2.0 < y < 4.5$ and in the meson transverse-momentum range $p_T > 6.5$ GeV/c. The cross-section for prompt production of $\eta_c (1S)$ mesons relative to the prompt $J/\psi$ cross-section is measured, for the first time, to be $\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B}$ at a centre-of-mass energy $\sqrt{s} = 7$ TeV using data corresponding to an integrated luminosity of 0.7 fb$^{-1}$, and $\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B}$ at $\sqrt{s} = 8$ TeV using 2.0 fb$^{-1}$. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the $\eta_c (1S)$ and $J/\psi$ decays to the $p \bar{p}$ final state. In addition, the inclusive branching fraction of $b$-hadron decays into $\eta_c (1S)$ mesons is measured, for the first time, to be $B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.29 \pm 0.67 _{B}) \times 10^{-3}$, where the third uncertainty includes also the uncertainty on the $J/\psi$ inclusive branching fraction from $b$-hadron decays. The difference between the $J/\psi$ and $\eta_c (1S)$ meson masses is determined to be $114.7 \pm 1.5 \pm 0.1$ MeV/c$^2$.
Differential cross-section for $\eta_c(1S)$ prompt production for $p_T > 6.5$ [GeV/$c$] and $2.0 < y < 4.5$. The reported uncertainties are total errors.
Differential cross-section for $\eta_c(1S)$ prompt production for $p_T > 6.5$ [GeV/$c$] and $2.0 < y < 4.5$. The reported uncertainties are total errors.
Differential cross-section for $\eta_c(1S)$ from inclusive charmonium production in b-hadrons decays for $p_T > 6.5$ [GeV/$c$] and $2.0 < y < 4.5$. The reported uncertainties are total errors.
We present the midrapidity charged pion invariant cross sections and the ratio of $\pi^-$-to-$\pi^+$ production ($5<p_T<13$ GeV/$c$), together with the double-helicity asymmetries ($5<p_T<12$ GeV/$c$) in polarized $p$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. The cross section measurements are consistent with perturbative calculations in quantum chromodynamics within large uncertainties in the calculation due to the choice of factorization, renormalization, and fragmentation scales. However, the theoretical calculation of the ratio of $\pi^-$-to-$\pi^+$ production when considering these scale uncertainties overestimates the measured value, suggesting further investigation of the uncertainties on the charge-separated pion fragmentation functions is needed. Due to cancellations of uncertainties in the charge ratio, direct inclusion of these ratio data in future parameterizations should improve constraints on the flavor dependence of quark fragmentation functions to pions. By measuring charge-separated pion asymmetries, one can gain sensitivity to the sign of $\Delta G$ through the opposite sign of the up and down quark helicity distributions in conjunction with preferential fragmentation of positive pions from up quarks and negative pions from down quarks. The double-helicity asymmetries presented are sensitive to the gluon helicity distribution over an $x$ range of $\sim$0.03--0.16.
Invariant cross section for $\pi^+$ and $\pi^-$ hadrons, as well as the statistical and systematic uncertainties. In addition, there is an absolute scale uncertainty of 9.6$\%$.
Double-helicity asymmetries and statistical uncertainties for $\pi^+$ and $\pi^-$ hadrons. The primary systematic uncertainties, which are fully correlated between points, are $1.4\times10^{-3}$ from relative luminosity and a $^{+7.0\%}_{-7.7\%}$ scaling uncertainty from beam polarization.
Ratio of charged pion cross section, as shown in Fig.6.