Peripheral Behavior of anti-p p --> K*+- K-+ Between 1-GeV/c and 2.5-GeV/c

Baubillier, M. ; De Billy, L. ; Rivoal, M. ; et al.
Nucl.Phys.B 104 (1976) 277-289, 1976.
Inspire Record 113110 DOI 10.17182/hepdata.35964

The reaction p p → K ∗ K does not exhibit any s -channel resonance effect between 1 and 2.5 GeV/ c . On the contrary, the data on p p → K ∗∓ K ± are compatible with an exchange mechanism in the t - and u -channels above 1.5 GeV/ c . Strong similarities are found with p p → K − K + and K ∗− K ∗+ . The polarisation of K ∗± is given. The reaction p p → K ∗0 K 0 vanishes above 1.5 GeV/ c

7 data tables

No description provided.

LEG(L=0) = SIG/(4*PI).

LEG(L=0) = SIG/(4*PI).

More…

K0(L) p ---> K0(S) p SCATTERING FROM 1-GeV/c TO 10-GeV/c

Brandenburg, G.W. ; Johnson, William B. ; Leith, David W.G.S. ; et al.
Phys.Rev.D 9 (1974) 1939, 1974.
Inspire Record 81133 DOI 10.17182/hepdata.21986

The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.

22 data tables

No description provided.

No description provided.

No description provided.

More…