We present a study of the reactions p p → p p π 0 , p p → p n π + , and p p → n p π − at 8.8 GeV/ c . Cross sections for the reactions are given, and the main features of the data are shown. The data are compared with the predictions of the Deck model, and evidence is presented for the presence of baryon exchange in the Deck amplitude.
No description provided.
We give cross sections for annihilation and non-annihilation reactions in p p interactions at 8.8 GeV. The non-annihilation data are compared with pp data from the same experiment. We compare data on resonance production and on the impact parameter structure of the final states in p p annihilation and non-annihilation and pp interactions. We investigate the charge structure of the 2 π + 2 π − π 0 final state, and find it consistent with a simple quark model.
NORMALIZED TO A TOTAL AP P CROSS SECTION OF 55.9 MB. ANNIHILATION CROSS SECTIONS.
NORMALIZED TO A TOTAL AP P CROSS SECTION OF 55.9 MB. NON-ANNIHILATION CROSS SECTIONS.
NORMALIZED TO A TOTAL P P CROSS SECTION OF 40.0 MB.
In a high statistics (90 events/μb) bubble chamber experiment, the reactions π − p→K s 0 K ± π ∓ n have been studied at 3.95 GeV/ c . A significant enhancement is observed in the ( K K π) system which we attribute to the production of the E(1420) meson. For its mass, M , and width, Λ, we find M =1426±6 MeV and Γ =40±15 MeV. The E(1420) quantum numbers are determined to be I G J P =0 + 1 + with a branching ratio E → K ∗ K + c.c E →[δπ+( K ∗ K + c.c. )]=0.86±0.12 , where δ→ K K . The cross section for the reaction π − p→En, with E→K 0 K ± π ± , is 8.2±1.0 μ b. Forward and backward productions are observed in the approximate ratio 2:1. The SU(3) assignment of the E(1420) meson is discussed.
BACKGROUND SUBTRACTED.
No description provided.
No description provided.
An analysis is presented of the reaction K − p → K 0 π − p at 4.2 GeV /c incident momentum, using analytical techniques in fully dimensional phase space. This methods allows to isolate the contributions of the 0 + , 1 − and 2 + (K π ) partial waves in various helecity Separating well-understood contributions from the rest, the method is particularly useful for the detection of small effects (≈1% of the total final-state cross section) not visible in the mass distributions: (i) small cross-section contributions of 3 − (K π partial waves, K ∗ (1780), are unambiguously isolated; (ii) 3.5σ evidence is given for Σ(1480) in the (p K 0 ) system; (iii) effects due to a second K π P-wave or the possible presence of a doubly peripheral mechanism are discussed. The method furthermore allows simultaneous treatment of the (K π ) partial waves, p π ) partial waves and their interferences and of a Σ(1765) signal (with spin 5 2 ). While interferences within the (K π ) and within the (p π ) systems are strongly determining the corresponding distributions, no interference between these systems is needed.
CHANNELS CONTRIBUTING TO K- P --> AK0 PI- P. M/ETA IS ABSOLUTE VALUE OF Z-COMPONENT OF SPIN/EXCHANGE NATURALITY.
The properties of the effect observed in the reaction p p → π + π − π + π − π 0 at 1949 ± 10 MeV /c 2 (τ ≅ 80 MeV /c 2 ) are studied. The ω 0 ϱ 0 , A 2 0 π + π − and π + π − π + π − π 0 (non-resonant) channels are found to be coupled with this object. The assignment I G = 1 − is established and an analysis of the √ s behaviour of the density matrix elements for the final state ω 0 ϱ 0 clearly favour J P = 2 + , 4 + … Comparisons are made with present theoretical schemes describing this mass region.
MAJOR CONTRIBUTION TO STRUCTURE OBSERVED AT 1949 +- 10 MEV WITH WIDTH 80 +- 20 MEV.
Inclusive cross sections for π 0 , K s 0 , Λ 0 and Λ 0 production in 100, 200 and 360 GeV /c π − p interactions are presented and compared with data at other energies. Invariant cross sections for γ, K s 0 , Λ 0 and Λ 0 production are presented in terms of Feynman x , the rapidity y , and transverse momentum squared, p T 2 . A comparison of the observed γ spectrum is made with the spectra computed assuming that the π 0 momentum distribution is identical to that of the observed π + or π − .
No description provided.
No description provided.
No description provided.
An experimental analysis of p p interactions between the p p threshold (√ s = 1878 MeV) and √ s = 2 100 MeV leads to clear evidence for an s -channel effect in the reaction p p → π + π − π + π − π 0 at 1949 ± 10 MeV /c 2 (Γ ⋍ 80 MeV /c 2 ) . A comparison is made with the backward elastic scattering and charge-exchange behaviour. An interpretation in terms of an object strongly coupled to mesonic decay modes, with small or middle-sized elasticity ( x ⩽ 0.135 −0.06 +0.13 ) is given. No significant narrow structure is observed in the backward elastic scattering between 1.9 and 2 GeV. The experimental resolution of √ s in this case is 2 MeV.
LOWER MOMENTUM RESULTS WERE REPORTED IN CH. D'ANDLAU ET AL., PL 58B, 223 (1975). TABULATED NUMERICAL VALUES OF DATA ON FIGURES SUPPLIED BY M. LALOUM.
K ∗0 (890) production in the hyperchange exchange reaction π − p → K ∗0 (890) Λ 0 Σ 0 at 10 GeV/ c (28 448 events) is discussed. An amplitude analysis in the t ′ range up to 1 GeV 2 shows that the production mechanism is dominated by natural parity exchange (∼84%). Comparisons are made with predictions from a Regge model and a quark model.
DENSITY MATRIX ELEMENTS IN THE GOTTFRIED-JACKSON SYSTEM ALLOWING FOR COHERENT S-WAVE BACKGROUND TO P-WAVE BREIT-WIGNER K*(892)0 RESONANCE.
No description provided.
The reaction p n → p p π − at 2.98 GeV/ c is studied with high statistics. The dominant Δ −− production is found in the framework of the additive quark model to proceed mainly through unnatural parity exchange in the t -channel. A detailed comparison with the reaction K − p → K ∗0 n confirms, for the dominant part of the cross section, the predictions of the quark model.
No description provided.
MIN(-T) IS 0.015 +- 0.006 GEV**2.
This report reviews the experimental investigation of high energy e + e − interactions by the MARK J collaboration at PETRA, the electron-positron colliding beam accelerator at DESY in Hamburg, Germany. The physics objectives include studies of several purely electromagnetic processes and hadronic final states, which further our knowledge of the nature of the fundamental constituents and of their strong, electromagnetic and weak interactions. Before discussing the physics results, the main features and the principal components of the MARK J detector are discussed in terms of design, function, and performance. Several aspects of the on-line data collection and the off-line analysis are also outlined. Results are presented on tests of quantum electrodynamics using e + e − → e + e − , μ + μ − and τ + τ − , on the measurement of R , the ratio of the hadronic to the point-like muon pair cross section, on the search for new quark flavors, on the discovery of three jet events arising from the radiation of hard noncollinear gluons as predicted by quantum chromodynamics, and on the determination of the strong coupling constant α s .
SUMMARY OF RESULTS FOR R FROM TOTAL OF 2595 HADRON EVENTS. INCLUDES RED = 1046, 1079, 1072 AND 1114.
MEAN THRUST AND THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 13, 17, 22 AND 30 GEV. SOMEWHAT DETECTOR DEPENDENT. INCLUDES RED = 1079 AND 1072. SEE ALSO RED = 1114. ALSO JET ANALYSIS USING FOX-WOLFRAM MOMENTS.
OBLATENESS DISTRIBUTION AT 17 AND 27.4 TO 31.6 GEV. SEE RED = 1146.