Date

Measurement of the electromagnetic form-factor of the proton in the timelike region

Antonelli, A. ; Baldini, R. ; Bertani, M. ; et al.
Phys.Lett.B 334 (1994) 431-434, 1994.
Inspire Record 377833 DOI 10.17182/hepdata.28572

The cross section for the process e + e − → p p has been measured in the s range 3.6–5.9 GeV 2 by the FENICE experiment at the e + e − Adone storage ring and the proton electromagnetic form factor has been extracted.

2 data tables match query

Cross section measurement.

Proton form-factor measurement.


Precision measurements of the timelike electromagnetic form factors of pion, kaon, and proton.

The CLEO collaboration Pedlar, T.K. ; Cronin-Hennessy, D. ; Gao, K.Y. ; et al.
Phys.Rev.Lett. 95 (2005) 261803, 2005.
Inspire Record 693873 DOI 10.17182/hepdata.130708

Using 20.7 pb^-1 of e+e- annihilation data taken at sqrt{s} = 3.671 GeV with the CLEO-c detector, precision measurements of the electromagnetic form factors of the charged pion, charged kaon, and proton have been made for timelike momentum transfer of |Q^2| = 13.48 GeV^2 by the reaction e+e- to h+h-. The measurements are the first ever with identified pions and kaons of |Q^2| > 4 GeV^2, with the results F_pi(13.48 GeV^2) = 0.075+-0.008(stat)+-0.005(syst) and F_K(13.48 GeV^2) = 0.063+-0.004(stat)+-0.001(syst). The result for the proton, assuming G^p_E = G^p_M, is G^p_M(13.48 GeV^2) = 0.014+-0.002(stat)+-0.001(syst), which is in agreement with earlier results.

2 data tables match query

Born cross section of $e^+e^-\rightarrow h^+h^-$

Timelike form factor


Measurement of the proton electromagnetic form-factors in the timelike region at 8.9-GeV**2 - 13-GeV**2

The E760 collaboration Armstrong, T.A. ; Bettoni, D. ; Bharadwaj, V. ; et al.
Phys.Rev.Lett. 70 (1993) 1212-1215, 1993.
Inspire Record 340584 DOI 10.17182/hepdata.19781

Cross sections for the reaction pp¯→e+e− have been measured at s=8.9,12.4, and 13.0 GeV2. The cross sections have been analyzed to obtain the proton electromagnetic form factors in the timelike region. We find that GM(q2)∝q−4αs2(q2) for q2≥5 (GeV/c)2.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

High Precision Measurements of the Form Factors of Pion, Kaon, and Proton at Large Timelike Momentum Transfers

Seth, Kamal K. ; Dobbs, S. ; Metreveli, Z. ; et al.
Phys.Rev.Lett. 110 (2013) 022002, 2013.
Inspire Record 1189656 DOI 10.17182/hepdata.130771

High precision measurements of the form factors of proton, pion, and kaon for timelike momentum transfers of |Q^2|=s=14.2 and 17.4 GeV^2 have been made. Data taken with the CLEO-c detector at sqrt(s)=3.772 GeV and 4.170 GeV, with integrated luminosities of 805 pb^-1 and 586 pb^-1, respectively, have been used to study $e^+e^-$ annihilations into pi+pi-, K+K^-, and ppbar. The perturbative QCD prediction that at large Q^2 the quantity Q^2F(Q^2) for vector mesons is nearly constant, and varies only weakly as the strong coupling constant alpha_S(Q^2) is confirmed for both pions and kaons. In contrast, a significant difference is observed between the values of the corresponding pQCD suggested near-constant quantity, |Q^4|G_M(|Q^2|)/mu_p for protons at |Q^2|=14.2 GeV^2 and 17.4 GeV^2. The results suggest the constancy of |Q^2|G_M(|Q^2|)/mu_p, instead.

2 data tables match query

Born cross section of $e^+e^-\rightarrow h^+h^-$

Timelike form factor


The Pion Electromagnetic Form-factor in the Timelike Energy Range 1.35-{GeV} $\le \sqrt{s} \le$ 2.4-{GeV}

The DM2 collaboration Bisello, D. ; Busetto, G. ; Castro, A. ; et al.
Phys.Lett.B 220 (1989) 321-327, 1989.
Inspire Record 267118 DOI 10.17182/hepdata.29829

The e + e − → π + π − cross section has been measured from about 280 events (an order of magnitude more than the previous world statistics) in the energy interval 1.35 ⩽ s ⩽ 2.4 GeV with the DM2 detector at DCI. The pion squared form factor | F π | 2 shows a deep minimum around 1.6 GeV/ c 2 and is better fit under the hypothesis of two ϱ-like resonance ⋍0.25 GeV/ c 2 wide with 1.42 and 1.77 GeV/ c 2 masses.

1 data table match query

Statistical errors only.


A Measurement of the Space - Like Pion Electromagnetic Form-Factor

The NA7 collaboration Amendolia, S.R. ; Arik, M. ; Badelek, B. ; et al.
Nucl.Phys.B 277 (1986) 168, 1986.
Inspire Record 228132 DOI 10.17182/hepdata.33611

The pion form factor has been measured in the space-like q 2 region 0.014 to 0.26 (GeV/ c ) 2 by scattering 300 GeV pions from the electrons of a liquid hydrogen target. A detailed description is given of the apparatus, data analysis and corrections to the data. The mean square charge radius extracted from the data is model-dependent. We find that a form which includes a realistic description of the form factor phase gives a similar results to the naive pole form, and conclude 〈r 2 π 〉 = 0.438±0.008 fm 2 .

1 data table match query

No description provided.


A Measurement of the Pion Charge Radius

Amendolia, S.R. ; Badelek, B. ; Batignani, G. ; et al.
Phys.Lett.B 146 (1984) 116-120, 1984.
Inspire Record 201598 DOI 10.17182/hepdata.30511

We report a measurement of the negative pion electromagnetic form factor in the range of space-like four-momentum transfer 0.014 < q 2 < 0.122 (GeV/ c ) 2 . The measurement was made by the NA7 collaboration at the CERN SPS, by observing the interaction of 300 GeV pions with the electrons of a liquid hydrogen target. The form factor is fitted by a pole form with a pion radius of 〈r 2 〈 1 2 = 0.657 ± 0.012 fm.

1 data table match query

Errors are statistical only.


Measurement of the Pion Form-factor in the Timelike Region for $q^2$ Values Between .1-{GeV}/$c^2$ and .18-{GeV}/$c^2$

Amendolia, S.R. ; Badelek, B. ; Batignani, G. ; et al.
Phys.Lett.B 138 (1984) 454-458, 1984.
Inspire Record 195944 DOI 10.17182/hepdata.30572

The EM form factor of the pion has been studied in the time-like region by measuring σ (e + e − → π + π − ) normalized to σ (e + e − → μ + μ − ). Results have been obtained for q 2 down to the physical threshold.

1 data table match query

No description provided.


Measurements of the proton elastic form-factors for 1-GeV/c**2 <= Q**2 <= 3-GeV/C**2 at SLAC

Walker, R.C. ; Filippone, B. ; Jourdan, J. ; et al.
Phys.Rev.D 49 (1994) 5671-5689, 1994.
Inspire Record 360764 DOI 10.17182/hepdata.22469

We report measurements of the proton form factors GEp and GMp extracted from elastic scattering in the range 1≤Q2≤3 (GeV/c)2 with total uncertainties < 15% in GEp and < 3% in GMp. Comparisons are made to theoretical models, including those based on perturbative QCD, vector-meson dominance, QCD sum rules, and diquark constituents in the proton. The results for GEp are somewhat larger than indicated by most theoretical parametrizations, and the ratios of the Pauli and Dirac form factors Q2(F2pF1p) are lower in value and demonstrate a weaker Q2 dependence than those predictions. A global extraction of the elastic form factors from several experiments in the range 0.1 0.1<Q2<10 (GeV/c)2 is also presented.

6 data tables match query

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

More…

Study of the Reaction $e^+ e^- \to p \bar{p}$ in the Total Energy Range 1925-{MeV} - 2180-{MeV}

Delcourt, B. ; Derado, I. ; Bertrand, J.L. ; et al.
Phys.Lett.B 86 (1979) 395-398, 1979.
Inspire Record 141565 DOI 10.17182/hepdata.27308

The e + e − → p p cross section has been measured between 1925 and 2180 MeV. About 50 p p events were detected. The total cross section decreases from 1.31 ± 0.4 nb near 1937 MeV to 0.55 ± 0.2 nb near 2135 MeV. The proton form factors | G E | 2 and | G M | 2 , assumed identical, decrease from 0.15 ± 0.05 to 0.043 ± 0.015. They are an order of magnitude higher than predicted by the well-known dipole fit. The energy range has been scanned in steps of about 2 MeV. No significant structure was found in this p p sample.

1 data table match query

TOTAL CROSS SECTION ASSUMING ISOTROPIC PRODUCTION. RADIATIVE CORRECTIONS CALCULATED USING PEAKING APPROXIMATION (ABOUT 20 PCT). AUTHORS ALSO QUOTE RESULTS FOR LIMITED (COSMIC RAY FREE) ACCEPTANCE AS A CHECK. FORM FACTOR DERIVED ASSUMING ELECTRIC AND MAGNETIC FORM FACTORS EQUAL IN MAGNITUDE.