Differential dijet cross sections are measured in photoproduction in the region of photon virtualities Q^2 < 1 GeV^2 with the H1 detector at the HERA ep collider using an integrated luminosity of 66.6 pb^{-1}. Jets are defined with the inclusive k_T algorithm and a minimum transverse momentum of the leading jet of 25 GeV is required. Dijet cross sections are measured in direct and resolved photon enhanced regions separately. Longitudinal proton momentum fractions up to 0.7 are reached. The data compare well with predictions from Monte Carlo event generators based on leading order QCD and parton showers and with next-to-leading order QCD calculations corrected for hadronisation effects.
Bin averaged cross sections for dijet photoproduction shown separately for high and low X(C=GAMMA).
Bin averaged cross sections for dijet photoproduction shown separately for high and low X(C=GAMMA) and for dijet mass > 65 GeV.
Bin averaged cross sections for dijet photoproduction shown separately for high and low XP.
The diffractive photoproduction of rho mesons, e p \to e rho Y, with large momentum transfer squared at the proton vertex, |t|, is studied with the H1 detector at HERA using an integrated luminosity of 20.1 pb^{-1}. The photon-proton centre of mass energy spans the range 75 < W < 95 GeV, the photon virtuality is restricted to Q^2 < 0.01 GeV^2 and the mass M_Y of the proton remnant is below 5 GeV. The t dependence of the cross section is measured for the range 1.5 < |t| < 10.0 GeV^2 and is well described by a power law, dsigma/ d|t| \propto |t|^{-n}. The spin density matrix elements, which provide information on the helicity structure of the interaction, are extracted using measurements of angular distributions of the rho decay products. The data indicate a violation of s-channel helicity conservation, with contributions from both single and double helicity-flip being observed. The results are compared to the predictions of perturbative QCD models.
The normalized differential cross section as a function of T.
Normalised decay angular distribution w.r.t. the polar angle THETA.
Normalised decay angular distribution w.r.t. the polar angle THETA.
Deep-inelastic ep scattering data taken with the H1 detector at HERA and corresponding to an integrated luminosity of 106 pb^{-1} are used to study the differential distributions of event shape variables. These include thrust, jet broadening, jet mass and the C-parameter. The four-momentum transfer Q is taken to be the relevant energy scale and ranges between 14 GeV and 200 GeV. The event shape distributions are compared with perturbative QCD predictions, which include resummed contributions and analytical power law corrections, the latter accounting for non-perturbative hadronisation effects. The data clearly exhibit the running of the strong coupling alpha_s(Q) and are consistent with a universal power correction parameter alpha_0 for all event shape variables. A combined QCD fit using all event shape variables yields alpha_s(mZ) = 0.1198 \pm 0.0013 ^{+0.0056}_{-0.0043} and alpha_0 = 0.476 \pm 0.008 ^{+0.018} _{-0.059}.
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 14.0 to 16.0 GeV and X = 0.00841 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 16.0 to 20.0 GeV and X = 0.01180 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 20.0 to 30.0 GeV and X = 0.02090 .
Data taken with positrons of different longitudinal polarisation states in collision with unpolarised protons at HERA are used to measure the total cross sections of the charged current process, e^+ p \to \bar{\nu}X, for negative four-momentum transfer squared Q^2 > 400 GeV^2 and inelasticity y<0.9. Together with the corresponding cross section obtained from the previously published unpolarised data, the polarisation dependence of the charged current cross section is measured for the first time at high Q^2 and found to be in agreement with the Standard Model prediction.
Measured cross sections.
The production of forward jets has been measured in deep inelastic ep collisions at HERA. The results are presented in terms of single differential cross sections as a function of the Bjorken scaling variable (x_{Bj}) and as triple differential cross sections d^3 \sigma / dx_{Bj} dQ^2 dp_{t,jet}^2, where Q^2 is the four momentum transfer squared and p_{t,jet}^2 is the squared transverse momentum of the forward jet. Also cross sections for events with a di-jet system in addition to the forward jet are measured as a function of the rapidity separation between the forward jet and the two additional jets. The measurements are compared with next-to-leading order QCD calculations and with the predictions of various QCD-based models.
Single differential forward jet cross section as a function of Bjorken X.
Triple differential cross section.
Triple differential cross section.
Measurements are presented of inclusive charm and beauty cross sections in e^+p collisions at HERA for values of photon virtuality 12 \le Q^2 \le 60 GeV^2 and of the Bjorken scaling variable 0.0002 \le x \le 0.005. The fractions of events containing charm and beauty quarks are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 vertex detector. Values for the structure functions F_2^{c\bar{c}} and F_2^{b\bar{b}} are obtained. This is the first measurement of F_2^{b\bar{b}} in this kinematic range. The results are found to be compatible with the predictions of perturbative quantum chromodynamics and withprevious measurements of F_2^{c\bar{c}}.
Measured NC reduced cross section for charm quarks.
Measuredstructure function F2 for charm quarks.
Measured NC reduced cross section for BOTTOM quarks.
First measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarized 6-LiD target are presented. The data were taken in 2002 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. The Collins asymmetry turns out to be compatible with zero, as does the measured Sivers asymmetry within the present statistical errors.
Asymmetries as a function of X for LEADING hadrons.
Asymmetries as a function of Z for LEADING hadrons.
Asymmetries as a function of PT for LEADING hadrons.
A measurement of the beauty production cross section in ep collisions at a centre-of-mass energy of 319 GeV is presented. The data were collected with the H1 detector at the HERA collider in the years 1999-2000. Events are selected by requiring the presence of jets and muons in the final state. Both the long lifetime and the large mass of b-flavoured hadrons are exploited to identify events containing beauty quarks. Differential cross sections are measured in photoproduction, with photon virtualities Q^2 < 1 GeV^2, and in deep inelastic scattering, where 2 < Q^2 < 100 GeV^2. The results are compared with perturbative QCD calculations to leading and next-to-leading order. The predictions are found to be somewhat lower than the data.
Muons and jets from beauty photoproduction, pseudorapidity.
Muons and jets from beauty photoproduction, muon transverse momentum.
Muons and jets from beauty photoproduction, leading jet transverse momentum
We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 < Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03.
Measured values of A1 as a function of Q**2 at a mean X value of 0.0051.
Measured values of A1 as a function of Q**2 at a mean X value of 0.0079.
Measured values of A1 as a function of Q**2 at a mean X value of 0.0141.
Measurements are reported of the production of dijet events with a leading neutron in ep interactions at HERA. Differential cross sections for photoproduction and deep inelastic scattering are presented as a function of several kinematic variables. Leading order QCD simulation programs are compared with the measurements. Models in which the real or virtual photon interacts with a parton of an exchanged pion are able to describe the data. Next-to-leading order perturbative QCD calculations based on pion exchange are found to be in good agreement with the measured cross sections. The fraction of leading neutron dijet events with respect to all dijet events is also determined. The dijet events with a leading neutron have a lower fraction of resolved photon processes than do the inclusive dijet data.
Differential e p photoproduction cross section as a function of the jet transverse energy.
Differential e p photoproduction cross section as a function of JET pseudorapidity.
Differential e p photoproduction cross section as a function of JET X(C=GAMMA).