The production ofb andc quarks ine+e− annihilation has been studied with the CELLO detector in the range from 35 GeV up to the highest PETRA energies. The heavy quarks have been tagged by their semileptonic decays. The charge asymmetries forb quarks at 35 and 43 GeV have been found to beAb=−(22.2±8.1)% andAb=−(49.1±16.5)%, respectively, using a method incorporating jet variables and their correlations for the separation of the heavy quarks from the back ground of the lighter quarks. Forc quarks we obtainAc=−(12.9±8.8)% andAc=+(7.7±14.0)%, respectively. The axial vector coupling constants of the heavy quarksc andb are found to beac=+(0.29±0.46) andab=−(1.15±0.41) taking\(B^0 \overline {B^0 } \) mixing into account. The results are in agreement with the expectations from the standard model.
BOTTOM quark charge asymmetry.
CHARMED quark charge asymmetry.
The forward-backward charge asymmetries of theb andc quarks are measured with the JADE detector at PETRA at\(\sqrt s= 35\) GeV and 44 GeV using both electrons and muons to tag the heavy quarks. At\(\sqrt s= 35\) GeV, a simultaneous fit for the two asymmetries yields the resultAb=−9.3±5.2% (state.) ndAc=−9.6±4.0% (stat.). The systematic errors are comparable with the statistical uncertainties. Combining the measurements at both energies and alternately constraining the weak coupling of thec andb quark to their Standard Model values (ac=1,ab=−1) increases the precision of the measurement of coupling constant of the other quark. Using this procedureab=−0.72±0.34 andac=0.79±0.40, where the numbers are corrected for\(B\bar B - mixing\) and the errors include both statistical and systematic contributions. The mixing parameter for continuum\(b\bar b - production\) is determined to be χ-0.24±0.12 if both heavy quark coupling constants are constrained to their values in the Standard Model.
Results of simultaneous fit to both asymmetries. This table is for the CHARMED quark.
Results of simultaneous fit to both asymmetries. This table is for the BOTTOM quark.
Results for BOTTOM quark asymmetry with c asymmetry constrained to the standard model value.
No description provided.
The forward-backward asymmetry of quarks produced in e+e− annihilations, summed over all flavors, is measured at √s between 50 and 60.8 GeV. Methods of determining the charge direction of jet pairs are discussed. The asymmetry is found to agree with the five-flavor standard model.
Forward backward asymmetry summed over all flavours of quarks.
The charmed quark charge asymmetry has been measured at the average centre of mass energy of 35 GeV with the JADE detector at thee+e− storage ring PETRA. Charmed quarks were identified byD*± tagging using the ΔM technique.D*± mesons were reconstructed through their decay intoD0 mesons resulting in (Kπ) π and (K π π π) π final states. The measured charge asymmetryA=−0.149±0.067 is in agreement with the expectation from the electroweak interference effect in quantum flavour dynamics (QFD).
CHARMED quark charge asymmetry.
We report on a measurement of the forward-backward charge asymmetry in e+e−→qq¯ at KEK TRISTAN, where the asymmetry is near maximum. We sum over all flavors and measure the asymmetry by determining the charge of the quark jets. In addition we exploit flavor dependencies in the jet charge determination to enhance the contributions of certain flavors. This provides a check on the asymmetries of individual flavors. The measurement agrees with the standard model expectations.
Forward--backward asymmetry summed over all flavours of quarks.
We present a measurement of the electron charge asymmetry in ppbar->W+X->enu+X events at a center of mass energy of 1.96 TeV using 0.75 fb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. The asymmetry is measured as a function of the electron transverse momentum and pseudorapidity in the interval (-3.2, 3.2) and is compared with expectations from next-to-leading order calculations in perturbative quantum chromodynamics. These measurements will allow more accurate determinations of the proton parton distribution functions.
Folded electron charged asymmetry.
Using data from Fermilab fixed-target experiment E791, we have measured particle-antiparticle production asymmetries for lambda zero, cascade minus, and omega minus hyperons in pi minus-nucleon interactions at 500 GeV/c. The asymmetries are measured as functions of Feynman-x (x_F) and pt^2 over the ranges of -0.12 GE x_F LE 0.12 and 0 GE pt^2 LE 4 (GeV/c)^2. We find substantial asymmetries, even at x_F = 0. We also observe leading-particle- type asymmetries which qualitatively agree with theoretical predictions.
No description provided.
No description provided.
No description provided.
A leading charm meson is one with longitudinal momentum fraction, xF>0, whose light quark (or antiquark) is of the same type as one of the quarks in the beam particles. We report on the production asymmetry, A=[σ(leading-σ(nonleading)]/[σ(leading)+σ(nonleading)] as a function of xF. The data consist of 1500 fully reconstructed D± and D*± decays in Fermilab experiment E 769. We find a significant asymmetry for the production of charm quarks is not expected in perturbative quantum chromodynamics.
Asymmetry as function of XL.
Asymmetry as function of PT**2.
We present a measurement of asymmetries in the production of $\Lambda_c^+$ and $\Lambda_c^-$ baryons in 500 GeV/c $\pi^-$--nucleon interactions from the E791 experiment at Fermilab. The asymmetries were measured as functions of Feynman x ($x_F$) and transverse momentum squared ($p_T^2$) using a sample of $1819 \pm 62$ $\Lambda_c$'s observed in the decay channel $\Lambda_c \to pK^-\pi^+$. We observe more $\Lambda_c^+$ than $\Lambda_c^-$ baryons, with an asymmetry of $(12.7\pm3.4\pm1.3) %$ independent of $x_F$ and $p_T^2$ in our kinematical range $(-0.1 < x_F < 0.6$ and $0.0 < p_T^2 < 8.0 (GeV/c)^2$). This $\Lambda_c$ asymmetry measurement is the first with data in both the positive and negative $x_F$ regions.
No description provided.
No description provided.