An investigation of the polar angle distribution of charged hadrons is presented using data taken by the JADE experiment at the PETRA e^+e^- collider at centre-of-mass energies of 35 and 44 GeV. From fits to the polar angle distribution the longitudinal, sigma_L, and transverse, sigma_T, cross-section relative to the total hadronic are determined at an average energy scale of 36.6 GeV. The results are sigma_L/sigma_tot = 0.067 +/- 0.013, sigma_T/sigma_tot = 0.933 -/+ 0.013 where total errors are given and the results are exactly anti-correlated. Using the next-to-leading order QCD prediction for the longitudinal cross-section, the value alpha_S(36.6 GeV) = 0.150 +/- 0.025 of the strong coupling constant is obtained in agreement with the world average value of alpha_S evolved to an energy scale of 36.6 GeV.
The distribution oF Q*COS(THETA) where Q is the charge of the individual hadron and THETA is the polar angle between the direction of the incoming E- beam and the outgoing hadron. The data are corrected for detector effects.
Value of the longitudinal cross section relative to the total cross section.
Value of the strong coupling constant ALPHAS deduced from the measurements. The second DSYS error is the uncertainty on the renormalisation scale.
The transverse, longitudinal and asymmetric components of the fragmentation function are measured from the inclusive charged particles produced in$e^+e^-$collisi
Transverse component of the differential cross section.
Longitudinal component of the differential cross section.
Asymmetric component of the differential cross section.
We present new high statistics data on hadron production in photon-photon reactions. The data are analyzed in terms of an electron-photon scattering formalism. The dependence of the total cross section of Q 2 , the four-momentum transfer squared of the scattered electron, and on the mass W of the hadronic system is investigated. The data are compared to predictions from Vector-Meson Dominance and the quark model.
No description provided.
DEPENDENCE ON VISIBLE HADRONIC INVARIANT MASS.
Data read from graph.
We have analyzed 1113 events of the reaction e + e − → hadrons at CM energies of 12 and 30 GeV in order to make a detailed comparison with QCD. Perturbative effects can be well separated from effects depending on the quark and gluon fragmentation parameters to yield a reliable measurement of the coupling constant α S . At 30 GeV, the result is α S = 0.17 ± 0.02 (statistical) ± 0.03 (systematic). QCD model predictions, using the fragmentation parameters determined along with α S , agree with both gross properties of the final states and with detailed features of the three-jet states.
No description provided.
No description provided.
No description provided.
Hadron production by e + e − annihilation has been studied for c.m. energies W between 13 and 31.6 GeV. As a function of 1n W the charged particle multiplicity grows faster at high energy than at lower energies. This is correlated with a rise in the plateau of the rapidity distribution. The cross section s d σ /d x is found to scale within ±30% for x > 0.2 and 5 ⩽ W ⩽ 31.6 GeV.
CHARGED PARTICLE MULTIPLICITIES.
RAPIDITY DISTRIBUTION.
RAPIDITY DISTRIBUTION.
None
CORRECTIONS HAVE BEEN APPLIED FOR CONTRIBUTIONS FROM BEAM-GAS SCATTERING, TWO PHOTON SCATTERING, TAU HEAVY LEPTON PAIR PRODUCTION, AND FOR RADIATIVE EFFECTS. THE 13 AND 17 GEV MEASUREMENTS WERE PREVIOUSLY REPORTED IN R. BRANDELIK ET AL., PL 83B, 261 (1979).
PRELIMINARY INCLUSIVE CHARGED PARTICLE DISTRIBUTIONS.
None
SINGLE CHARGED PARTICLE MOMENTUM DISTRIBUTION.
No description provided.
No description provided.