Studies of hadronic event structure in e+ e- annihilation from 30-GeV to 209-GeV with the L3 detector

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Rept. 399 (2004) 71-174, 2004.
Inspire Record 652683 DOI 10.17182/hepdata.54900

In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.

68 data tables

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 130.1 GeV.

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 136.1 GeV.

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 161.3 GeV.

More…

Studies of QCD at e+ e- centre-of-mass energies between 91-GeV and 209-GeV.

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
Eur.Phys.J.C 35 (2004) 457-486, 2004.
Inspire Record 636645 DOI 10.17182/hepdata.12794

The hadronic final states observed with the ALEPH detector at LEP in ${\rm e}^ + {\rm e}^-$ annihilation

234 data tables

Mean charged particle multiplicities at different c.m. energies.

XP distribution at c.m. energy 133.0 GeV.

XP distribution at c.m. energy 161.0 GeV.

More…

A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 29 (2003) 285-312, 2003.
Inspire Record 620250 DOI 10.17182/hepdata.13029

Infrared and collinear safe event shape distributions and their mean values are determined in e+e- collisions at centre-of-mass energies between 45 and 202 GeV. A phenomenological analysis based on power correction models including hadron mass effects for both differential distributions and mean values is presented. Using power corrections, alpha_s is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD beta-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds beta_0 = 7.86 +/- 0.32 for the one loop coefficient of the beta-function or, assuming QCD, n_f = 4.75 +/- 0.44 for the number of active flavours. These values agree well with the QCD expectation of beta_0=7.67 and n_f=5. A direct measurement of the full logarithmic energy slope excludes light gluinos with a mass below 5 GeV.

71 data tables

1-THRUST distribution.

THRUST-MAJOR distribution.

THRUST-MINOR distribution.

More…

Inclusive sigma+ and sigma0 production in hadronic Z decays

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 479 (2000) 79-88, 2000.
Inspire Record 524450 DOI 10.17182/hepdata.49982

We report on measurements of the inclusive production rate of Sigma+ and Sigma0 baryons in hadronic Z decays collected with the L3 detector at LEP. The Sigma+ baryons are detected through the decay Sigma+ -> p pi0, while the Sigma0 baryons are detected via the decay mode Sigma0 -> Lambda gamma. The average numbers of Sigma+ and Sigma0 per hadronic Z decay are measured to be: < N_Sigma+ > + < N_Sigma+~ > = 0.114 +/- 0.011 (stat) +/- 0.009 (syst), < N_Sigma0 > + < N_Sigma0~ > = 0.095 +/- 0.015 (stat) +/- 0.013 (syst). These rates are found to be higher than the predictions from Monte Carlo hadronization models and analytical parameterizations of strange baryon production.

1 data table

Inclusive production rates.


Cross-sections and leptonic forward-backward asymmetries from the Z0 running of LEP.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 16 (2000) 371-405, 2000.
Inspire Record 527605 DOI 10.17182/hepdata.49969

During 1993 and 1995 LEP was run at 3 energies near the Z$^0$peak in order to give improved measurements of the mass and width of the resonance. During 1994, LEP o

14 data tables

Hadronic cross section measured with the 1993 data. Additional systematic error of 0.10 PCT (efficiencies and backgrounds) and 0.29 PCT (absolute luminosity).

Hadronic cross section measured with the 1994 data. Additional systematic error of 0.11 PCT (efficiencies and backgrounds) and 0.11 PCT (absolute luminosity).

Hadronic cross section measured with the 1995 data. Additional systematic error of 0.10 PCT (efficiencies and backgrounds) and 0.11 PCT (absolute luminosity).

More…

Inclusive Sigma- and Lambda(1520) production in hadronic Z decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 475 (2000) 429-447, 2000.
Inspire Record 524694 DOI 10.17182/hepdata.49984

Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be <N_{Sigma-}/N_{Z}^{had}> = 0.081 +/- 0.002 +/- 0.010, <N_{Lambda(1520)}/N_{Z}^{had}> = 0.029 +/- 0.005 +/- 0.005. The production rate of the Lambda(1520) suggests that a large fraction of the stable baryons descend from orbitally excited baryonic states. It is shown that the baryon production rates in Z decays follow a universal phenomenological law related to isospin, strangeness and mass of the particles.

4 data tables

The measured differential cross section for SIGMA- production.

The total production rate of SIGMA-. The second systematic (DSYS) error is due to the extrapolation to the fullx-range.

The measured differential cross section for LAMBDA(1520) production. The first error is the fit error.

More…

Measurement of inclusive rho0, f0(980), f2(1270), K*2(1430)0 and f'2(1525) production in Z0 decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 449 (1999) 364-382, 1999.
Inspire Record 482816 DOI 10.17182/hepdata.49345

DELPHI results are presented on the inclusive production of the neutral mesons ρ 0 , f 0 (980), f 2 (1270), K ∗0 2 (1430) and f ′ 2 (1525) in hadronic Z 0 decays. They are based on about 2 million multihadronic events collected in 1994 and 1995, using the particle identification capabilities of the DELPHI Ring Imaging Cherenkov detectors and measured ionization losses in the Time Projection Chamber. The total production rates per hadronic Z 0 decay have been determined to be: 1.19±0.10 for ρ 0 ; 0.164±0.021 for f 0 (980); 0.214±0.038 for f 2 (1270); 0.073±0.023 for K ∗0 2 (1430) ; and 0.012±0.006 for f ′ 2 (1525). The total production rates for all mesons and differential cross-sections for the ρ 0 , f 0 (980) and f 2 (1270) are compared with the results of other LEP experiments and with models.

2 data tables

Differential production cross sections. The error is the quadratic combination of the errors from the fits and the systematic uncertainty.

Integrated rates extrapolated to the full x range.


Measurement of inclusive omega and eta' production in hadronic Z decays.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 393 (1997) 465-476, 1997.
Inspire Record 427107 DOI 10.17182/hepdata.47618

We present a study of the inclusive ω and η′ production based on 3.1 million hadronic Z decays recorded with the L3 detector at LEP during 1991–1994. The production rates per hadronic Z decay have been measured to be 1.17±0.17 ω mesons and 0.25±0.04 η′ mesons. The production rates and the differential cross sections have been compared with predictions of the JETSET and the HERWIG Monte Carlo models. We have observed that the differential cross sections can be described by an analytical quantum chromodynamics calculation.

12 data tables

Final production rates per hadronic Z0 decay.

Corrected production rates from the omega --> pi+ pi- p0 decay mode. Extrapolation to full x range.

Corrected production rates from the etaprime --> pi+ pi- eta decay mode. Extrapolation to full x range.

More…

Measurement of event shape and inclusive distributions at s**(1/2) = 130-GeV and 136-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1997) 229-242, 1997.
Inspire Record 424629 DOI 10.17182/hepdata.47715

Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine αs from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: $$←pha _s(133 {⤪ GeV})={0.116}pm {0.007}_{exp-0.004theo}^{+0.005}$$ from the high energy data.

26 data tables

mean values for event shape variables.

Integral of event shape distribution over the specified interval.

Integral of event shape distribution over the specified interval.

More…

Study of prompt photon production in hadronic Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 69 (1995) 1-14, 1995.
Inspire Record 397391 DOI 10.17182/hepdata.48136

None

3 data tables

Rates for gamma + 1 jet.

Rates for gamma + 2 jet.

Rates for gamma + 3 jet.