Date

Collaboration

D-meson azimuthal anisotropy in mid-central Pb-Pb collisions at $\mathbf{\sqrt{s_{\rm NN}}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
Phys.Rev.Lett. 120 (2018) 102301, 2018.
Inspire Record 1608612 DOI 10.17182/hepdata.78255

The azimuthal anisotropy coefficient $v_2$ of prompt D$^0$, D$^+$, D$^{*+}$ and D$_s^+$ mesons was measured in mid-central (30-50% centrality class) Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV, with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays at mid-rapidity, $|y|<0.8$, in the transverse momentum interval $1

5 data tables

$v_2$ vs. $p_{\rm T}$ of $D^0$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$=5.02 TeV in the centrality class 30-50% in the rapidity interval |$y$|<0.8. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

$v_2$ vs. $p_{\rm T}$ of $D^+$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$=5.02 TeV in the centrality class 30-50% in the rapidity interval |$y$|<0.8. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

$v_2$ vs. $p_{\rm T}$ of $D^{*+}$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$=5.02 TeV in the centrality class 30-50% in the rapidity interval |$y$|<0.8. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

More…

Flow dominance and factorization of transverse momentum correlations in Pb-Pb collisions at the LHC

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 118 (2017) 162302, 2017.
Inspire Record 1512772 DOI 10.17182/hepdata.78231

We present the first measurement of the two-particle transverse momentum differential correlation function, $P_2\equiv\langle \Delta p_{\rm T} \Delta p_{\rm T} \rangle /\langle p_{\rm T} \rangle^2$, in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} =$ 2.76 TeV. Results for $P_2$ are reported as a function of relative pseudorapidity ($\Delta \eta$) and azimuthal angle ($\Delta \varphi$) between two particles for different collision centralities. The $\Delta \phi$ dependence is found to be largely independent of $\Delta \eta$ for $|\Delta \eta| \geq$ 0.9. In 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around $\Delta \varphi = \pi$ (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of $P_2$, studied as a function of collision centrality, show that correlations at $|\Delta \eta| \geq$ 0.9 can be well reproduced by a flow ansatz based on the notion that measured momentum correlations are strictly determined by the collective motion of the system.

19 data tables

Projection of $P_{2}$ along $\Delta\varphi$ in 0-5% centrality in the range $|\Delta \eta| \geq$ 0.9

$v_{2}$ coefficients measured from $P_2$ for particle pairs in the range $0.2 \leq |\Delta\eta| \leq 0.9$.

$v_{2}$ coefficients measured from $P_2$ for particle pairs in the range $0.9 \leq |\Delta\eta| \leq 1.9$.

More…

Pseudorapidity dependence of the anisotropic flow of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 762 (2016) 376-388, 2016.
Inspire Record 1456145 DOI 10.17182/hepdata.73940

We present measurements of the elliptic ($\mathrm{v}_2$), triangular ($\mathrm{v}_3$) and quadrangular ($\mathrm{v}_4$) anisotropic azimuthal flow over a wide range of pseudorapidities ($-3.5< \eta < 5$). The measurements are performed with Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV using the ALICE detector at the Large Hadron Collider (LHC). The flow harmonics are obtained using two- and four-particle correlations from nine different centrality intervals covering central to peripheral collisions. We find that the shape of $\mathrm{v}_n(\eta)$ is largely independent of centrality for the flow harmonics $n=2-4$, however the higher harmonics fall off more steeply with increasing $|\eta|$. We assess the validity of extended longitudinal scaling of $\mathrm{v}_2$ by comparing to lower energy measurements, and find that the higher harmonic flow coefficients are proportional to the charged particle densities at larger pseudorapidities. Finally, we compare our measurements to both hydrodynamical and transport models, and find they both have challenges when it comes to describing our data.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Version 2
Anisotropic flow of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 116 (2016) 132302, 2016.
Inspire Record 1419244 DOI 10.17182/hepdata.72886

We report the first results of elliptic ($v_2$), triangular ($v_3$) and quadrangular flow ($v_4$) of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region $|\eta|<0.8$ and for the transverse momentum range $0.2

11 data tables

Centrality dependence of $v_2$, with two- and multi-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/$c$, at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

Centrality dependence of $v_3$ and $v_4$, with two-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/c, at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

Centrality dependence of $v_2$, with two- and multi-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/c, at $\sqrt{s_{\rm NN}}$ = 2.76 TeV.

More…

Version 2
Centrality dependence of identified particles in relativistic heavy ion collisions at sqrt(s)= 7.7-62.4 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 93 (2016) 014907, 2016.
Inspire Record 1395151 DOI 10.17182/hepdata.71527

Elliptic flow (v_2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at sqrt{s_{NN}}= 7.7--62.4 GeV are presented for three centrality classes. The centrality dependence and the data at sqrt{s_{NN}}= 14.5 GeV are new. Except at the lowest beam energies we observe a similar relative v_2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v_2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with A Multiphase Transport Model and fit with a Blast Wave model.

396 data tables

The difference in $v_{2}$ between particles (X) and their corresponding antiparticles $\bar{X}$ (see legend) as a function of $\sqrt{s_{NN}}$ for 10%-40% central Au + Au collisions. The systematic errors are shown by the hooked error bars. The dashed lines in the plot are fits with a power-law function.

The difference in $v_{2}$ between protons and antiprotons as a function of $\sqrt{s_{NN}}$ for 0%-10%, 10%-40% and 40%-80% central Au + Au collisions. The systematic errors are shown by the hooked error bars. The dashed lines in the plot are fits with a power-law function.

The relative difference. The systematic errors are shown by the hooked error bars. The dashed lines in the plot are fits with a power-law function.

More…

Azimuthal anisotropy of charged jet production in $\sqrt{s_{\rm NN}}$ = 2.76 TeV Pb-Pb collisions

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 753 (2016) 511-525, 2016.
Inspire Record 1394678 DOI 10.17182/hepdata.70825

We present measurements of the azimuthal dependence of charged jet production in central and semi-central $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as $v_{2}^{\mathrm{ch~jet}}$. Jet finding is performed employing the anti-$k_{\mathrm{T}}$ algorithm with a resolution parameter $R$ = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero $v_{2}^{\mathrm{ch~jet}}$ is observed in semi-central collisions (30-50\% centrality) for 20 $<$ $p_{\mathrm{T}}^{\rm ch~jet}$ $<$ 90 ${\mathrm{GeV}\kern-0.05em/\kern-0.02em c}$. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the $v_2$ of single charged particles at high $p_{\mathrm{T}}$. Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions.

2 data tables

Second-order harmonic coefficient $v_2^{ch~jet}$ as function a of $p_{T}^{ch~jet}$ for 0--5% collision centrality.

Second-order harmonic coefficient $v_2^{ch~jet}$ as function a of $p_{T}^{ch~jet}$ for 30--50% collision centrality.


Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and $\phi$ meson in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 062301, 2016.
Inspire Record 1383879 DOI 10.17182/hepdata.71571

We present high precision measurements of elliptic flow near midrapidity ($|y|<1.0$) for multi-strange hadrons and $\phi$ meson as a function of centrality and transverse momentum in Au+Au collisions at center of mass energy $\sqrt{s_{NN}}=$ 200 GeV. We observe that the transverse momentum dependence of $\phi$ and $\Omega$ $v_{2}$ is similar to that of $\pi$ and $p$, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0-30$\%$ and 30-80$\%$ collision centrality. There is an indication of the breakdown of previously observed mass ordering between $\phi$ and proton $v_{2}$ at low transverse momentum in the 0-30$\%$ centrality range, possibly indicating late hadronic interactions affecting the proton $v_{2}$.

23 data tables

No description provided.

No description provided.

No description provided.

More…

Forward-central two-particle correlations in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 753 (2016) 126-139, 2016.
Inspire Record 1379977 DOI 10.17182/hepdata.70826

Two-particle angular correlations between trigger particles in the forward pseudorapidity range ($2.5 < |\eta| < 4.0$) and associated particles in the central range ($|\eta| < 1.0$) are measured with the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The trigger particles are reconstructed using the muon spectrometer, and the associated particles by the central barrel tracking detectors. In high-multiplicity events, the double-ridge structure, previously discovered in two-particle angular correlations at midrapidity, is found to persist to the pseudorapidity ranges studied in this Letter. The second-order Fourier coefficients for muons in high-multiplicity events are extracted after jet-like correlations from low-multiplicity events have been subtracted. The coefficients are found to have a similar transverse momentum ($p_{\rm T}$) dependence in p-going (p-Pb) and Pb-going (Pb-p) configurations, with the Pb-going coefficients larger by about $16\pm6$%, rather independent of $p_{\rm T}$ within the uncertainties of the measurement. The data are compared with calculations using the AMPT model, which predicts a different $p_{\rm T}$ and $\eta$ dependence than observed in the data. The results are sensitive to the parent particle $v_2$ and composition of reconstructed muon tracks, where the contribution from heavy flavour decays are expected to dominate at $p_{\rm T}>2$ GeV/$c$.

4 data tables

$v_{2}^{\mu}\{\rm{2PC,sub}\}$ extracted from muon-track correlations.

$v_{2}^{\mu}\{\rm{2PC,sub}\}$ coefficients from muon-tracklet correlations in p-going direction.

$v_{2}^{\mu}\{\rm{2PC,sub}\}$ coefficients from muon-tracklet correlations in Pb-going direction.

More…

Azimuthal anisotropy in U+U and Au+Au collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 222301, 2015.
Inspire Record 1373553 DOI 10.17182/hepdata.71502

Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, $v_2\{2\}$ and $v_2\{4\}$, for charged hadrons from U+U collisions at $\sqrt{s_{\rm NN}}$ = 193 GeV and Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. Nearly fully overlapping collisions are selected based on the amount of energy deposited by spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the observed dependence of $v_2\{2\}$ on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. An initial-state model with gluon saturation describes the slope of $v_2\{2\}$ as a function of multiplicity in central collisions better than one based on Glauber with a two-component multiplicity model.

20 data tables

No description provided.

No description provided.

No description provided.

More…

Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 114 (2015) 252302, 2015.
Inspire Record 1358666 DOI 10.17182/hepdata.72237

We present measurements of $\pi^-$ and $\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\pi^-$ ($\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\sqrt{s_{_{\rm NN}}} = \text{27 GeV}$ and higher. At $\sqrt{s_{_{\rm NN}}} = \text{200 GeV}$, the slope of the difference of $v_2$ between $\pi^-$ and $\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

10 data tables

The distribution of observed charge asymmetry from STAR data.

Pion $v_2${2} as a function of observed charge asymmetry.

$v_2$ difference between $\pi^-$ and $\pi^+$ as a function of charge asymmetry with the tracking efficiency correction, for 30-40% central Au+Au collisions at 200 GeV. The errors are statistical only.

More…