The inclusive J/$\psi$ elliptic ($v_2$) and triangular ($v_3$) flow coefficients measured at forward rapidity (2.5 $
Inclusive J/$\psi$ $v_2$ as a function of $p_{T}$ in the centrality interval 0$-$10.0 %
Inclusive J/$\psi$ $v_2$ as a function of $p_{T}$ in the centrality interval 10$-$30 %
Inclusive J/$\psi$ $v_2$ as a function of $p_{T}$ in the centrality interval 30$-$50 %
The elliptic and triangular flow coefficients $v_2$ and $v_3$ of prompt D$^{0}$, D$^{+}$, and D$^{*+}$ mesons were measured at midrapidity ($|y|<0.8$) in Pb-Pb collisions at the centre-of-mass energy per nucleon pair of $\sqrt{s_{NN}} = 5.02$ TeV with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays in the transverse momentum interval $1< p_{\rm T}<36$ GeV/$c$ in central (0-10%) and semi-central (30-50%) collisions. Compared to pions, protons, and J/$\psi$ mesons, the average D-meson $v_{n}$ harmonics are compatible within uncertainties with a mass hierarchy for $p_{\rm T} \lesssim 3$ GeV/$c$, and are similar to those of charged pions for higher $p_{\rm T}$. The coupling of the charm quark to the light quarks in the underlying medium is further investigated with the application of the event-shape engineering (ESE) technique to the D-meson $v_2$ and $p_{\rm T}$-differential yields. The D-meson $v_2$ is correlated with average bulk elliptic flow in both central and semi-central collisions. Within the current precision, the ratios of per-event D-meson yields in the ESE-selected and unbiased samples are found to be compatible with unity. All the measurements are found to be reasonably well described by theoretical calculations including the effects of charm-quark transport and the recombination of charm quarks with light quarks in a hydrodynamically expanding medium.
Average $v_2${SP} vs. $p_\mathrm{T}$ of prompt D$^0$, D$^+$, and D$^{*+}$ mesons in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV in the centrality class 0-10% in the rapidity interval $|y|<0.8$. The first (sys,data) error is the systematic uncertainty from all the other sources except for the B feed-down. The second (sys,FD) error is the systematic uncertainty from the B feed-down contribution.
Average $v_2${SP} vs. $p_\mathrm{T}$ of prompt D$^0$, D$^+$, and D$^{*+}$ mesons in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV in the centrality class 30-50% in the rapidity interval $|y|<0.8$. The first (sys,data) error is the systematic uncertainty from all the other sources except for the B feed-down. The second (sys,FD) error is the systematic uncertainty from the B feed-down contribution.
Average $v_3${SP} vs. $p_\mathrm{T}$ of prompt D$^0$, D$^+$, and D$^{*+}$ mesons in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV in the centrality class 0-10% in the rapidity interval $|y|<0.8$. The first (sys,data) error is the systematic uncertainty from all the other sources except for the B feed-down. The second (sys,FD) error is the systematic uncertainty from the B feed-down contribution.
We present the first measurement of the two-particle transverse momentum differential correlation function, $P_2\equiv\langle \Delta p_{\rm T} \Delta p_{\rm T} \rangle /\langle p_{\rm T} \rangle^2$, in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} =$ 2.76 TeV. Results for $P_2$ are reported as a function of relative pseudorapidity ($\Delta \eta$) and azimuthal angle ($\Delta \varphi$) between two particles for different collision centralities. The $\Delta \phi$ dependence is found to be largely independent of $\Delta \eta$ for $|\Delta \eta| \geq$ 0.9. In 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around $\Delta \varphi = \pi$ (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of $P_2$, studied as a function of collision centrality, show that correlations at $|\Delta \eta| \geq$ 0.9 can be well reproduced by a flow ansatz based on the notion that measured momentum correlations are strictly determined by the collective motion of the system.
Projection of $P_{2}$ along $\Delta\varphi$ in 0-5% centrality in the range $|\Delta \eta| \geq$ 0.9
$v_{2}$ coefficients measured from $P_2$ for particle pairs in the range $0.2 \leq |\Delta\eta| \leq 0.9$.
$v_{2}$ coefficients measured from $P_2$ for particle pairs in the range $0.9 \leq |\Delta\eta| \leq 1.9$.
We present measurements of the elliptic ($\mathrm{v}_2$), triangular ($\mathrm{v}_3$) and quadrangular ($\mathrm{v}_4$) anisotropic azimuthal flow over a wide range of pseudorapidities ($-3.5< \eta < 5$). The measurements are performed with Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV using the ALICE detector at the Large Hadron Collider (LHC). The flow harmonics are obtained using two- and four-particle correlations from nine different centrality intervals covering central to peripheral collisions. We find that the shape of $\mathrm{v}_n(\eta)$ is largely independent of centrality for the flow harmonics $n=2-4$, however the higher harmonics fall off more steeply with increasing $|\eta|$. We assess the validity of extended longitudinal scaling of $\mathrm{v}_2$ by comparing to lower energy measurements, and find that the higher harmonic flow coefficients are proportional to the charged particle densities at larger pseudorapidities. Finally, we compare our measurements to both hydrodynamical and transport models, and find they both have challenges when it comes to describing our data.
No description provided.
No description provided.
No description provided.
We report the first results of elliptic ($v_2$), triangular ($v_3$) and quadrangular flow ($v_4$) of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region $|\eta|<0.8$ and for the transverse momentum range $0.2
Centrality dependence of $v_2$, with two- and multi-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/$c$, at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.
Centrality dependence of $v_3$ and $v_4$, with two-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/c, at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.
Centrality dependence of $v_2$, with two- and multi-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/c, at $\sqrt{s_{\rm NN}}$ = 2.76 TeV.
We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\sqrt{s_{NN}}=7.7$ GeV to 200 GeV. The third harmonic $v_3^2\{2\}=\langle \cos3(\phi_1-\phi_2)\rangle$, where $\phi_1-\phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\Delta\eta = \eta_1-\eta_2$. Non-zero {\vthree} is directly related to the previously observed large-$\Delta\eta$ narrow-$\Delta\phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2\{2\}$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2\{2\}$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, $v_3^2\{2\}$ for central collisions shows a minimum near {\snn}$=20$ GeV.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.
Dihadron angular correlations in $d$+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity ($\Delta\eta$) on the near side (i.e. relative azimuth $\Delta\phi\sim0$). This correlated yield as a function of $\Delta\eta$ appears to scale with the dominant, primarily jet-related, away-side ($\Delta\phi\sim\pi$) yield. The Fourier coefficients of the $\Delta\phi$ correlation, $V_{n}=\langle\cos n\Delta\phi\rangle$, have a strong $\Delta\eta$ dependence. In addition, it is found that $V_{1}$ is approximately inversely proportional to the mid-rapidity event multiplicity, while $V_{2}$ is independent of it with similar magnitude in the forward ($d$-going) and backward (Au-going) directions.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for -4.5 < $\Delta\eta$ < -2 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.