AN ANALYSIS OF MULTI - HADRONIC EVENTS PRODUCED WITH TWO ENERGETIC LEPTONS IN e+ e- ANNIHILATION

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Dainton, J.B. ; et al.
Phys.Lett.B 212 (1988) 515-522, 1988.
Inspire Record 262955 DOI 10.17182/hepdata.29907

A search for multihadronic events produced with two energetic leptons has been performed at PETRA using 130 pb −1 accumulated by the CELLO detector at 35 GeV ⩽ √ s ⩽46.8 GeV. Three μ + μ − , eleven e + e − and three eμ events were observed. The mesured yields an dthe event characteristics are in good agreement with the expectation for the α 4 QED processes e + e − → ℓ + ℓ − q q and from semileptonic decays of pairs of heavy quarks.

1 data table

No description provided.


A Measurement of the Muon Pair Production in $e^+ e^-$ Annihilation at 38.3-{GeV} $\le \sqrt{s} \le$ 46.8-{GeV}

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 191 (1987) 209-216, 1987.
Inspire Record 244835 DOI 10.17182/hepdata.30180

The e + e − → μ + μ − reaction has been studied at centre of mass energies ranging between 38.3 abd 46.8 GeV with the CELLO detector at PETRA. We present results on the cross section and the charge asymmetry for this channel. Combining all the data at the average energy 〈 s 〉=43 GeV we obtain R μμ =〈 σ μμ / σ 0 〉=0.98±0.04±0.04, 〈 A μμ 〉=(−14.1±3.7±1.0)%, where σ 0 is the QED cross section and A μμ is the charge asymmetry corrected for pure radiative effects. These results are in good agreement with the expected values of R μμ =1.01 and A μμ =−14.5% at that energy.

3 data tables

Mu-pair cross sections.

Corrected angular distributions with data sample divided into two energy regions with means 39 and 44 GeV and total energy region.

Forward-backward asymmetry.


Determination of alpha-s and sin**2theta(w) from Measurements of the Total Hadronic Cross-Section in e+ e- Annihilation

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 183 (1987) 400-411, 1987.
Inspire Record 236981 DOI 10.17182/hepdata.30231

We have measured the total normalized cross section R for the process e + e − → hadrons at centre-of-mass energies between 14.0 and 46.8 GeV based on an integrated luminosity of 60.3 pb −1 . The data are well described by the standard SU(3) c ⊗SU(2) L ⊗U(1) model with the production of the five known quarks. No open production of a sixth quark with charge 2/3 or 1/3 occurs below a centre-of-mass energy of 46.6 or 46.3 GeV, respectively. A fitting procedure which takes the correlations between measurements into account was used to determine the electroweak mixing angle sin 2 θ w and the strong coupling constant α s ( S ) in second-order QCD. We applied this procedure to the CELLO data and in addition included the data from other experiments at PETRA and PEP. Both fits give consistent results. The fit to the combined data yields α s (34 2 GeV 2 ) = 0.165±0.030, and sin 2 θ w = 0.236±0.020. Fixing sin 2 θ w at the world average value of 0.23 yields α s (34 2 GeV 2 ) = 0.169±0.025.

2 data tables

No description provided.

No description provided.


Search for New Heavy Quarks in $e^+ e^-$ Collisions Up to 46.78-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 144 (1984) 297-301, 1984.
Inspire Record 202783 DOI 10.17182/hepdata.30514

The total e + e − annihilation onto hadron has been measured at CM energies between 33.00 and 36.72 GeV and between 38.66 and 46.78 GeV in steps of 20 and 30 MeV respectively. The average of the ratio R = σ ( e + e − → hadrons )/ σ is 〈 R 〉=3.85±0.12 and 〈 R 〉=4.04±0.10 for the two energy ranges. The systematic error on 〈 R 〉 is 0.31. Both values are consistent with the expectation for the known coloured quarks u, d, s, c and b. No evidence was found for the production of new quarks. If the largest fluctuation in R is interpreted as a narrow resonance, it corresponds to a product of the electronic width and the hadronic branching ratio Γ ee B had >2.9 keV at the 95% confidence level, well below the value expected for the toponium vector ground state with charge 2 3 e . The observed number of aplanar final states rules out the continuum production of a a new heavy flavour with pointlike cross section up to a CM energy of 45.4 GeV for a quarck charge of 1 3 e . and up to 46.6 GeV for 2 3 e at the 95% confidence level.

2 data tables

ENERGY SCANS IN 20(30) MEV STEPS.

No description provided.


Limits on Spin 0 Bosons in $e^+ e^-$ Annihilation Up to 45.2-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 140 (1984) 130-136, 1984.
Inspire Record 199851 DOI 10.17182/hepdata.30547

We have studied the reactions e + e − → e + e − , e + e − → γγ , e + e − → μ + μ − , and e + e − → τ + τ − in the centre-of-mass (CM) energy range from 39.8 to 45.2 GeV using the CELLO detector at PETRA. Upper limits on the partial widths for new spin 0 bosons with masses both within and above the energy range covered are determined. No evidence for contributions of such new particles has been observed up to the highest PETRA energies in a model independent way. Under the assumptions of recently suggested models relating the existence of spin 0 bosons to the radiative width Γ τ of the Z 0 we exclude such bosons at the 95% confidence level for masses below the Z 0 -mass if Γ τ > 20 MeV.

2 data tables

No description provided.

Figure actually gives the 95 PCT CL upper limits of the coupling constants for each process as a function of the mass of the intermediate spin zero boson.


On the Model Dependence of the Determination of the Strong Coupling Constant in Second Order {QCD} From $e^+ e^-$ Annihilation Into Hadrons

The CELLO collaboration Behrend, H.J. ; Fenner, H. ; Schachter, M.J. ; et al.
Phys.Lett.B 138 (1984) 311-316, 1984.
Inspire Record 195332 DOI 10.17182/hepdata.6634

Hadronic events obtained with the CELLO detector at PETRA are compared with second order QCD predictions using different models for the fragmentation of quarks and gluons into hadrons. We find that the model dependence in the determination of the strong coupling constant persists when going from first to second order QCD calculations.

3 data tables

ASYMMETRY FOR DATA CORRECTED WITH IF MODEL (ALPHA-S=0.12).

ASSYMETRY FOR DATA CORRECTED WITH SF MODEL (ALPHA-S=0.19).

No description provided.


Inclusive $\gamma$ and $\pi^0$ Production in $e^+ e^-$ Annihilation at 14-{GeV}, 22-{GeV}, and 34-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Fenner, H. ; Schachter, M.J. ; et al.
Z.Phys.C 20 (1983) 207, 1983.
Inspire Record 191415 DOI 10.17182/hepdata.16318

We have measured the scale invariant inclusive photon and π0 cross sections atW=14, 22 and 34 GeV. A comparison with π± data shows no significant difference between neutral and charged pion production. Comparing the integrated cross sections in thex range 0.15<x<1.0 we observe a considerable decrease from 14 GeV to 34 GeV with a statistical significance of 1.5 standard deviations. This is compatible with the expectations for scaling violations from QCD.

8 data tables

NUMERICAL VALUES OF DATA SUPPLIED BY H. OBERLACK.

NUMERICAL VALUES OF DATA SUPPLIED BY H. OBERLACK.

NUMERICAL VALUES OF DATA SUPPLIED BY H. OBERLACK.

More…

Investigation of Two Photon Final States in $e^+ e^-$ Annihilation at $\sqrt{s}=34$.2-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Phys.Lett.B 123 (1983) 127-132, 1983.
Inspire Record 182585 DOI 10.17182/hepdata.30780

Two photon final states in e + e − annihilation have been analyzed at CM energies around 34 GeV. Good agreement with QED is observed. Lower limits for the QED cutoff parameters of Λ + > 59 GeV and Λ - > 44 GeV are determined. A search for two photons with missing energy yields an upper limit for the production of neutral particles which decay into a photon and a non-interacting particle. Constraints on the mass and the coupling strength of supersymmetric photinos are discussed.

2 data tables

Cross section for ABS(cos(theta)) <0.85.

No description provided.


Coupling Strengths of Weak Neutral Currents From Leptonic Final States at 22-{GeV} and 34-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Z.Phys.C 16 (1983) 301, 1983.
Inspire Record 180756 DOI 10.17182/hepdata.16385

Differential cross sections fore+e−→e+e−, τ+, τ- measured with the CELLO detector at\(\left\langle {\sqrt s } \right\rangle= 34.2GeV\) have been analyzed for electroweak contributions. Vector and axial vector coupling constants were obtained in a simultaneous fit to the three differential cross sections assuming a universal weak interaction for the charged leptons. The results,v2=−0.12±0.33 anda2=1.22±0.47, are in good agreement with predictions from the standardSU(2)×U(1) model for\(\sin ^2 \theta _w= 0.228\). Combining this result with neutrino-electron scattering data gives a unique axial vector dominated solution for the leptonic weak couplings. Assuming the validity of the standard model, a value of\(\sin ^2 \theta _w= 0.21_{ - 0.09}^{ + 0.14}\) is obtained for the electroweak mixing angle. Additional vector currents are not observed (C<0.031 is obtained at the 95% C.L.).

2 data tables

No description provided.

Combined MU and TAU asymmetry. See PL 114B(1982)282 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1234> RED = 1234 </a>) and ZP C14(1982)283 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1245> RED = 1245 </a>) for individual asymmetry measurements.


The Influence of Fragmentation Models on the Determination of the Strong Coupling Constant in $e^+ e^-$ Annihilation Into Hadrons

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Nucl.Phys.B 218 (1983) 269-288, 1983.
Inspire Record 179447 DOI 10.17182/hepdata.8172

Hadronic events obtained with the CELLO detector at PETRA were compared with first-order QCD predictions using two different models for the fragmentation of quarks and gluons, the Hoyer model and the Lund model. Both models are in reasonable agreement with the data, although they do not completely reproduce the details of many distributions. Several methods have been applied to determine the strong coupling constant α S . Although within one model the value of α S varies by 20% among the different methods, the values determined using the Lund model are 30% or more larger (depending on the method used) than the values determined with the Hoyer model. Our results using the Hoyer model are in agreement with previous results based on this approach.

3 data tables

DATA CORRECTED WITH HOYER MODEL (ALPHA-S=0.15).

DATA CORRECTED WITH LUND MODEL (ALPHA-S=0.25).

No description provided.