This paper presents the results on charged particle yields and production ratios as measured by the NA56/SPY experiment for 450 GeV/c proton interactions on beryllium targets. The data cover a seconda
Positive particle yield from the 100mm Be target. Data are corrected for the pion or proton flux coming from strange particle decays.
Negative particle yield from the 100mm Be target. Data are corrected for the pion or antiproton flux coming from strange particle decays.
Positive particle yield from the 100mm Be target. Data are NOT corrected for the pion or proton flux coming from strange particle decays.
Production of charged particles identified by a multi cell threshold Čerenkov counter in proton-tungsten and central sulphur-tungsten collisions at 200 GeV/ c per nucleon is discussed. The π ± , p and p production ratios and transverse mass spectra at central rapidity and p T > 0.6 GeV/ c are presented and compared with results from other experiments at the same beam energy.
No description provided.
No description provided.
The slope evaluated from the D(N)/D(MT)/(MT**1.5) distribution (denoted as D(N)/D(MT)).
Antiproton production cross-sections have been measured for p+C, C+C, C+Cu and C+Pb collisions at 3.65 GeV/nucleon.\(\bar p\) laboratory momentum and angle are 0.8 GeV/c and 24°. The target mass dependence parameter is found to be 0.43±0.1. A strong increase in antiproton yield is observed from p+C, d+C to C+C collisions. Projectile mass parameter is 1.2±0.2 for d+C to C+C. The construction and calibration of APAKI, an annihilation detector for\(\bar p\) identification, are also described.
No description provided.
During the recent commissioning of Au beams at the Brookhaven Alternating Gradient Synchrotron facility, experiment 886 measured production cross sections for π±, K±, p, and p¯ in minimum bias Au+Pt collisions at 11.5A GeV/c. Invariant differential cross sections, Ed3σ/dp3, were measured at several rigidities (p/Z≤1.8 GeV/c) using a 5.7° (fixed-angle) focusing spectrometer. For comparison, particle production was measured in minimum bias Si+Pt collisions at 14.6A GeV/c using the same apparatus and in p+Pt collisions at 12.9 GeV/c using a similar spectrometer at KEK. When normalized to projectile mass, Aproj, the measured π± and K± cross sections are nearly equal for the p+Pt and Si+Pt reactions. In contrast to this behavior, the π− cross section measured in Au+Pt shows a significant excess beyond Aproj scaling of the p+Pt measurement. This enhancement suggests collective phenomena contribute significantly to π− production in the larger Au+Pt colliding system. For the Au+Pt reaction, the π+ and K+ yields also exceed Aproj scaling of p+Pt collisions. However, little significance can be attributed to these excesses due to larger experimental uncertainties for the positive rigidity Au beam measurements. For antiprotons, the Si+Pt and Au+Pt cross sections fall well below Aproj scaling of the p+Pt yields indicating a substantial fraction of the nuclear projectile is ineffective for p¯ production. Comparing with p+Pt multiplicities, the Si+Pt and Au+Pt antiproton yields agree with that expected solely from ‘‘first’’ nucleon-nucleon collisions (i.e., collisions between previously unstruck nucleons). In light of expected p¯ annihilation in the colliding system, such projectile independence is unexpected without additional (projectile dependent) sources of p¯ production. In this case, the data indicate an approximate balance exists between absorption and additional sources of antiprotons. This balance is remarkable given the wide range of projectile mass spanned by these measurements.
No description provided.
No description provided.
No description provided.
We report measurements of the ratios K+π+, pπ+, K−π−, p¯π−, π−π+, K−K+, and p¯p for hadrons with 0.19<xt<0.62 produced in p−Be and p−W collisions at s=38.8 GeV. The K+π+ ratio at high xt gives the fragmentation-function ratio DuK+Duπ+ at high z. The high-xt K−π− ratio gives an upper limit for DdK−Ddπ− at high z. The pt dependence of pπ+ suggests that scattered constituent diquarks are the primary source of protons with pt<6 GeV/c. We also present species correlations in high-mass h+h− pairs. Strong K+K− and pp¯ correlations were observed.
No description provided.
No description provided.
No description provided.
None
1.0 cm WT target.
1.0 cm C target.
1.0 cm CU target.
Data are presented on the inclusive production of π±, K±, p, and p¯ for π+, K+, and protons incident on nuclear targets at 100 GeV. The results cover the kinematic range 30≤P≤88 GeV/c for Pt=0.3 and 0.5 GeV/c. The observed A dependence of the invariant cross sections exhibits remarkable simplicity, which does not naturally follow from current models of particle production. The results show that the hypothesis of limiting fragmentation can be extended to include collisions with nuclei.
No description provided.
Measurements of the production inp-BeO collisions of charged baryons and antibaryons with strangeness between −3 and +3 at\(\sqrt s= 21.2GeV\)x=0.48, andpT=600MeV/c are reported. The experimental results can be interpreted within the framework of a simple proton fragmentation-recombination model.
No description provided.
No description provided.
No description provided.