Date

Search for lepton flavor-violating decay modes $B^0 \to K^{\ast 0}\tau^\pm\ell^\mp$ ($\ell = e,\mu$) with hadronic B-tagging at Belle and Belle II

The Belle-II & Belle collaborations Adachi, I. ; Ahn, Y. ; Aihara, H. ; et al.
Belle II preprint: 2025-014, 2025.
Inspire Record 2920672 DOI 10.17182/hepdata.159492

We present the results of a search for the charged-lepton-flavor violating decays $B^0 \rightarrow K^{*0}\tau^\pm \ell^{\mp}$, where $\ell^{\mp}$ is either an electron or a muon. The results are based on 365 fb$^{-1}$ and 711 fb$^{-1}$ datasets collected with the Belle II and Belle detectors, respectively. We use an exclusive hadronic $B$-tagging technique, and search for a signal decay in the system recoiling against a fully reconstructed $B$ meson. We find no evidence for $B^0 \rightarrow K^{*0}\tau^\pm \ell^{\mp}$ decays and set upper limits on the branching fractions in the range of $(2.9-6.4)\times10^{-5}$ at 90% confidence level.

72 data tables

$M_{\tau}$ distribution in signal region, (OS$e$, Belle)

$M_{\tau}$ distribution in signal region, (OS$e$, Belle II)

$M_{\tau}$ distribution in signal region, (OS$\mu$, Belle)

More…

Search for $B^0 \to K^{\ast 0} \tau^+ \tau^-$ decays at the Belle II experiment

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Belle II Preprint 2025-010; KEK Preprint 2025-8, 2025.
Inspire Record 2911582 DOI 10.17182/hepdata.159541

We present a search for the rare flavor-changing neutral-current decay $B^0 \to K^{\ast 0} \tau^+ \tau^-$ with data collected by the Belle II experiment at the SuperKEKB electron-positron collider. The analysis uses a 365 fb$^{-1}$ data sample recorded at the center-of-mass energy of the $\Upsilon(4S)$ resonance. One of the $B$ mesons produced in the $\Upsilon(4S)\to B^0 \bar{B}^0$ process is fully reconstructed in a hadronic decay mode, while its companion $B$ meson is required to decay into a $K^{\ast 0}$ and two $\tau$ leptons of opposite charge. The $\tau$ leptons are reconstructed in final states with a single electron, muon, charged pion or charged $\rho$ meson, and additional neutrinos. We set an upper limit on the branching ratio of $BR(B^0 \to K^{\ast 0} \tau^+ \tau^-) < 1.8 \times 10^{-3}$ at the 90% confidence level, which is the most stringent constraint reported to date.

4 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - -<br/><br/></ul><b>Post-fit yields:</b><ul><li><a href="159541?version=1&table=Postfit%20yields:%20fit%20variable">Fit variable $\eta(\rm{BDT})$</a></ul><b>Signal $q^{2}$:</b><ul><li><a href="159541?version=1&table=Generated%20$q^2$"> Generated $q^{2}$ distribution </a></ul><b>Signal selection efficiency:</b><ul><li><a href="159541?version=1&table=Selection%20efficiency"> Selection efficieny in signal region </a>

Observed yields and fit results in bins of $\eta(\rm{BDT})$ as obtained by the fit on the four signal categories, corresponding to an integrated luminosity of 365 fb$^{-1}$. The yields are shown for $B^0 \rightarrow K^{\ast 0}\tau\tau$ signal and the two background components ($B\bar{B}$ decays and $q\bar{q}$ continuum).

Distribution of the di-tau invariant mass squared $q^2$ assumed for the generated signal $B^0 \rightarrow K^{\ast 0}\tau\tau$ events.

More…

Measurement of the $e^+e^- \to \pi^+\pi^-\pi^0$ cross section in the energy range 0.62-3.50 GeV at Belle II

The Belle-II collaboration Adachi, I. ; Aggarwal, L. ; Aihara, H. ; et al.
Phys.Rev.D 110 (2024) 112005, 2024.
Inspire Record 2775022 DOI 10.17182/hepdata.155340

We report a measurement of the $e^+e^- \to \pi^+\pi^-\pi^0$ cross section in the energy range from 0.62 to 3.50 GeV using an initial-state radiation technique. We use an $e^+e^-$ data sample corresponding to 191 $\text{fb}^{-1}$ of integrated luminosity, collected at a center-of-mass energy at or near the $\Upsilon{(4S)}$ resonance with the Belle II detector at the SuperKEKB collider. Signal yields are extracted by fitting the two-photon mass distribution in $e^+e^- \to \pi^+\pi^-\pi^0\gamma$ events, which involve a $\pi^0 \to \gamma\gamma$ decay and an energetic photon radiated from the initial state. Signal efficiency corrections with an accuracy of 1.6% are obtained from several control data samples. The uncertainty on the cross section at the $\omega$ and $\phi$ resonances is dominated by the systematic uncertainty of 2.2%. The resulting cross sections in the 0.62-1.80 GeV energy range yield $ a_\mu^{3\pi} = [48.91 \pm 0.23~(\mathrm{stat}) \pm 1.07~(\mathrm{syst})] \times 10^{-10} $ for the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. This result differs by $2.5$ standard deviations from the most precise current determination.

5 data tables

Energy bin range ($\sqrt{s'}$), number of events after unfolding ($N_{\mathrm{unf}}$), corrected efficiency ($\varepsilon$), and cross section ($\sigma_{3\pi}$) for $e^{+}e^{-} \to \pi^{+} \pi^{-} \pi^{0}$ in energy range 0.62--1.05~GeV. The two uncertainties in the cross section are the statistical and systematic contributions. The statistical uncertainties for the unfolding and cross section are square roots of the diagonal components of the unfolding covariance matrix. The image shows Figure 23 in the PRD paper, and the points with error bars indicate the cross section in the table.

Energy bin range ($\sqrt{s'}$), number of events after unfolding ($N_{\mathrm{unf}}$), corrected efficiency ($\varepsilon$), and cross section ($\sigma_{3\pi}$) for $e^{+}e^{-} \to \pi^{+} \pi^{-} \pi^{0}$ in energy range 1.05--3.50~GeV. The two uncertainties in the cross section are the statistical and systematic contributions. The statistical uncertainties for the unfolding and cross section are square roots of the diagonal components of the unfolding covariance matrix. The image shows Figure 23 in the PRD paper, and the points with error bars indicate the cross section in the table.

The statistic covariance matrix for the $e^+e^- \to \pi^+ \pi^- \pi^0$ cross section measurement at the Belle II. The 212 x 212 matrix of the energy ranges from 0.62 to 3.50 GeV. This covariance matrix, obtained by propagating the covariance matrix in the unfolding procedure, shows the total statistical uncertainties for the cross section results.

More…

Combination of measurements of the top quark mass from data collected by the ATLAS and CMS experiments at $\sqrt{s}=7$ and 8 TeV

The ATLAS & CMS collaborations Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 261902, 2024.
Inspire Record 2789110 DOI 10.17182/hepdata.143309

A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The data sets used correspond to an integrated luminosity of up to 5 and 20$^{-1}$ of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak $t$-channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is $m_\mathrm{t}$ = 172.52 $\pm$ 0.14 (stat) $\pm$ 0.30 (syst) GeV, with a total uncertainty of 0.33 GeV.

1 data table

Uncertainties on the $m_{t}$ values extracted in the LHC, ATLAS, and CMS combinations arising from the categories described in the text, sorted in order of decreasing value of the combined LHC uncertainty.


Determination of $|V_{cb}|$ using $\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell$ decays with Belle II

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Phys.Rev.D 108 (2023) 092013, 2023.
Inspire Record 2705370 DOI 10.17182/hepdata.145129

We determine the CKM matrix-element magnitude $|V_{cb}|$ using $\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell$ decays reconstructed in $189 \, \mathrm{fb}^{-1}$ of collision data collected by the Belle II experiment, located at the SuperKEKB $e^+e^-$ collider. Partial decay rates are reported as functions of the recoil parameter $w$ and three decay angles separately for electron and muon final states. We obtain $|V_{cb}|$ using the Boyd-Grinstein-Lebed and Caprini-Lellouch-Neubert parametrizations, and find $|V_{cb}|_\mathrm{BGL}=(40.57\pm 0.31 \pm 0.95\pm 0.58)\times 10^{-3}$ and $|V_{cb}|_\mathrm{CLN}=(40.13 \pm 0.27 \pm 0.93\pm 0.58 )\times 10^{-3}$ with the uncertainties denoting statistical components, systematic components, and components from the lattice QCD input, respectively. The branching fraction is measured to be ${\cal B}(\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell)=(4.922 \pm 0.023 \pm 0.220)\%$. The ratio of branching fractions for electron and muon final states is found to be $0.998 \pm 0.009 \pm 0.020$. In addition, we determine the forward-backward angular asymmetry and the $D^{*+}$ longitudinal polarization fractions. All results are compatible with lepton-flavor universality in the Standard Model.

8 data tables

Measured partial decay rates $\Delta\Gamma$ (in units of $10^{-15}$ GeV)

Average of normalized decay rates over $\overline{B}^0\to D^{*+} e^- \bar\nu_e$ and $\overline{B}^0\to D^{*+} \mu^- \bar\nu_\mu$ decays

Full experimental (statistical and systematic) correlations (in \%) of the partial decay rates for the $\overline{B}^0\to D^{*+} e^- \bar\nu_e$ and $\overline{B}^0\to D^{*+} \mu^- \bar\nu_\mu$ decays.

More…

Tests of light-lepton universality in angular asymmetries of $B^0 \to D^{*-} \ell \nu$ decays

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Phys.Rev.Lett. 131 (2023) 181801, 2023.
Inspire Record 2685572 DOI 10.17182/hepdata.144759

We present the first comprehensive tests of light-lepton universality in the angular distributions of semileptonic $B^0$-meson decays to charged spin-1 charmed mesons. We measure five angular-asymmetry observables as functions of the decay recoil that are sensitive to lepton-universality-violating contributions. We use events where one neutral $B$ is fully reconstructed in $\Upsilon\left(4S\right)\to{}B \overline{B}$ decays in data corresponding to $189~\mathrm{fb}^{-1}$ integrated luminosity from electron-positron collisions collected with the Belle II detector. We find no significant deviation from the standard model expectations.

2 data tables

Observed values of all angular asymmetry variables.

Full experimental covariance matrix of all angular asymmetry variables.


Version 2
Search for a long-lived spin-0 mediator in $b\to s$ transitions at the Belle II experiment

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Phys.Rev.D 108 (2023) L111104, 2023.
Inspire Record 2665757 DOI 10.17182/hepdata.147283

Additional spin-0 particles appear in many extensions of the standard model. We search for long-lived spin-0 particles $S$ in $B$-meson decays mediated by a $b\to s$ quark transition in $e^+e^-$ collisions at the $\Upsilon(4S)$ resonance at the Belle II experiment. Based on a sample corresponding to an integrated luminosity of $189 \mathrm{\,fb}^{-1}$, we observe no evidence for signal. We set model-independent upper limits on the product of branching fractions $\mathrm{Br}(B^0\to K^*(892)^0(\to K^+\pi^-)S)\times \mathrm{Br}(S\to x^+x^-)$ and $\mathrm{Br}(B^+\to K^+S)\times \mathrm{Br}(S\to x^+x^-)$, where $x^+x^-$ indicates $e^+e^-, \mu^+\mu^-, \pi^+\pi^-$, or $K^+K^-$, as functions of $S$ mass and lifetime at the level of $10^{-7}$.

166 data tables

Expected and observed candidates for $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to e^+e^-$) as a function of the reduced mediator candidate mass.

Expected and observed candidates for $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \mu^+\mu^-$) as a function of the reduced mediator candidate mass.

Expected and observed candidates for $\mathcal{B}($$B^+\to K^+S$$) \times$ $\mathcal{B}($$S\to \pi^+\pi^-$) as a function of the reduced mediator candidate mass.

More…

Measurements of the suppression and correlations of dijets in Xe+Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abeling, K. ; et al.
Phys.Rev.C 108 (2023) 024906, 2023.
Inspire Record 2630510 DOI 10.17182/hepdata.139684

Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.

62 data tables

The centrality intervals in Xe+Xe collisions and their corresponding TAA with absolute uncertainties.

The centrality intervals in Xe+Xe and Pb+Pb collisions for matching SUM ET FCAL intervals and respective TAA values for Xe+Xe collisions.

The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.

More…

Search for an invisible $Z^\prime$ in a final state with two muons and missing energy at Belle II

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Phys.Rev.Lett. 130 (2023) 231801, 2023.
Inspire Record 2611344 DOI 10.17182/hepdata.138160

The $L_{\mu}-L_{\tau}$ extension of the standard model predicts the existence of a lepton-flavor-universality-violating $Z^{\prime}$ boson that couples only to the heavier lepton families. We search for such a $Z^\prime$ through its invisible decay in the process $e^+ e^- \to \mu^+ \mu^- Z^{\prime}$. We use a sample of electron-positron collisions at a center-of-mass energy of 10.58GeV collected by the Belle II experiment in 2019-2020, corresponding to an integrated luminosity of 79.7fb$^{-1}$. We find no excess over the expected standard-model background. We set 90$\%$-confidence-level upper limits on the cross section for this process as well as on the coupling of the model, which ranges from $3 \times 10^{-3}$ at low $Z^{\prime}$ masses to 1 at $Z^{\prime}$ masses of 8$GeV/c^{2}$.

4 data tables

Observed 90% CL upper limits on the cross section $\sigma (e^+ e^- \to \mu^+ \mu^- Z', Z' \to $ invisible) as functions of the $Z'$ mass for the cases of negligible $\Gamma_{Z'}$ and for $\Gamma_{Z'} = 0.1 M_{Z'}$. Also shown are previous limits from Belle II.

Observed 90% CL upper limits on the coupling $g'$ for the fully invisible $L_\mu − L_\tau$ model as functions of the $Z'$ mass for the cases of negligible $\Gamma_{Z'}$ and for $\Gamma_{Z'} = 0.1 M_{Z'}$. Also shown are previous limits from NA64-e and Belle II searches. The red band shows the region that explains the muon anomalous magnetic moment $(g - 2)_\mu \pm 2 \sigma$. The vertical dashed line indicates the limit beyond which the hypothesis $B(Z' \to \chi\bar{\chi}) \approx 1$ is not respected in the negligible $\Gamma_{Z'}$ case.

Observed 90% CL upper limits on the coupling $g'$ for the vanilla $L_\mu − L_\tau$ model as functions of the $Z'$ mass. Also shown are previous limits from Belle II and NA64-e searches for invisible $Z'$ decays, and from Belle, BaBar and CMS searches for $Z'$ decays to muons (at 95% CL). The red band shows the region that explains the muon anomalous magnetic moment $(g - 2)_\mu \pm 2 \sigma$.

More…

Version 2
Evidence for the charge asymmetry in $pp \rightarrow t\bar{t}$ production at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 08 (2023) 077, 2023.
Inspire Record 2141752 DOI 10.17182/hepdata.132116

Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.

50 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Results:</b> <ul> <li><a href="132116?version=2&table=Resultsforchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllmll">$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Bounds on the Wilson coefficients:</b> <ul> <li><a href="132116?version=2&table=BoundsonWilsoncoefficientschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=BoundsonWilsoncoefficientschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> </ul> <b>Ranking of systematic uncertainties:</b></br> Inclusive:<a href="132116?version=2&table=NPrankingchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a></br> <b>$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin0">$\beta_{z,t\bar{t}} \in[0,0.3]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin1">$\beta_{z,t\bar{t}} \in[0.3,0.6]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin2">$\beta_{z,t\bar{t}} \in[0.6,0.8]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin3">$\beta_{z,t\bar{t}} \in[0.8,1]$</a> </ul> <b>$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin0">$m_{t\bar{t}}$ &lt; $500$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin1">$m_{t\bar{t}} \in [500,750]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin2">$m_{t\bar{t}} \in [750,1000]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin3">$m_{t\bar{t}} \in [1000,1500]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin4">$m_{t\bar{t}}$ &gt; $1500$GeV</a> </ul> <b>$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin0">$p_{T,t\bar{t}} \in [0,30]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin1">$p_{T,t\bar{t}} \in[30,120]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin2">$p_{T,t\bar{t}}$ &gt; $120$GeV</a> </ul> Inclusive leptonic:<a href="132116?version=2&table=NPrankingleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a></br> <b>$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin0">$\beta_{z,\ell\bar{\ell}} \in [0,0.3]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin1">$\beta_{z,\ell\bar{\ell}} \in [0.3,0.6]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin2">$\beta_{z,\ell\bar{\ell}} \in [0.6,0.8]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin3">$\beta_{z,\ell\bar{\ell}} \in [0.8,1]$</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin0">$m_{\ell\bar{\ell}}$ &lt; $200$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin1">$m_{\ell\bar{\ell}} \in [200,300]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin2">$m_{\ell\bar{\ell}} \in [300,400]$Ge$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin3">$m_{\ell\bar{\ell}}$ &gt; $400$GeV</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin0">$p_{T,\ell\bar{\ell}}\in [0,20]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin1">$p_{T,\ell\bar{\ell}}\in[20,70]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin2">$p_{T,\ell\bar{\ell}}$ &gt; $70$GeV</a> </ul> <b>NP correlations:</b> <ul> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationsleptonicchargeasymmetryinclusive">$A_c^{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Covariance matrices:</b> <ul> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul>

The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

More…