Transverse-target-spin asymmetry in exclusive $\omega$-meson electroproduction

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Eur.Phys.J.C 75 (2015) 600, 2015.
Inspire Record 1391139 DOI 10.17182/hepdata.75465

Hard exclusive electroproduction of $\omega$ mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modulations of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive $\pi\omega$ transition form factor.

4 data tables

The amplitudes of the five sine and two cosine modulations as determined in the entire kinematic region. The results receive an additional 8.2% scale uncertainty corresponding to the target-polarization uncertainty.

The definition of intervals and the mean values of the kinematic variables.

Results on the kinematic dependences of the five asymmetry amplitudes $A_{UT}$ and two amplitudes $A_{UU}$. The first two columns correspond to the $-t'$ intervals $0.00 - 0.07 - 0.20$ GeV$^2$ and the last two columns to the $Q^{2}$ intervals $1.00 - 1.85 - 10.00$ GeV$^2$. The results receive an additional 8.2% scale uncertainty corresponding to the target-polarization uncertainty.

More…

Two-Photon Production of Charged Pion and Kaon Pairs

The CLEO collaboration Dominick, J. ; Lambrecht, M. ; Sanghera, S. ; et al.
Phys.Rev.D 50 (1994) 3027-3037, 1994.
Inspire Record 372230 DOI 10.17182/hepdata.47104

A measurement of the cross section for the combined two-photon production of charged pion and kaon pairs is performed using 1.2~$\rm fb^{-1}$ of data collected by the CLEO~II detector at the Cornell Electron Storage Ring. The cross section is measured at invariant masses of the two-photon system between 1.5 and 5.0 GeV/$c^2$, and at scattering angles more than $53^\circ$ away from the $\gamma\gamma$ collision axis in the $\gamma\gamma$ center-of-mass frame. The large background of leptonic events is suppressed by utilizing the CsI calorimeter in conjunction with the muon chamber system. The reported cross section is compared with leading order QCD models as well as previous experiments. In particular, although the functional dependence of the measured cross section disagrees with leading order QCD at small values of the two-photon invariant mass, the data show a transition to perturbative behavior at an invariant mass of approximately 2.5 GeV/$c^2$. hardcopies with figures can be obtained by writing to to: Pam Morehouse preprint secretary Newman Lab Cornell University Ithaca, NY 14853 or by sending mail to: preprints@lns62.lns.cornell.edu

1 data table

There is an additional 10 pct point-to-point systematic error as well as the overall uncertainty given above.