We have measured the magnetic moments of the Σ+ and Σ¯ − hyperons produced by 800-GeV protons incident on a Cu target. We determine the Σ+ magnetic moment to be (2.4613±0.0034±0.0040)μN where the uncertainties are statistical and systematic, respectively. In this first measurement we determine the magnetic moment of the Σ¯ − to be -(2.428±0.036±0.007)μN. The magnetic moments of the Σ+ and Σ¯ − are consistent with each other in magnitude but opposite in sign as required by CPT invariance.
No description provided.
No description provided.
The CERES experiment (CErenkov Ring Electron Spectrometer) studies the production of low mass e + e − pairs in proton-proton, proton-nucleus and nucleus-nucleus interactions at the CERN SPS. The CERES spectrometer, has a novel design based on two Ring Imaging Cherenkov (RICH) counters, and it operates close to its design specifications. Data were recorded with 200 GeV u sulfur beam and 450 GeV proton beam. The analysis is in progress. We have extracted first e + − -pairs samples for p+Be, p+Au and S+Au collisions. In addition other physics topics were addressed. Inclusive photon spectra were measured in S+Au interactions. No excess over known hadronic sources was found within our present systematic error of 11%. Results on high p i charged pion spectra are presented up to 4 GeV c . We also studied the production of e + e − -pairs m the strong electromagnetic fields of very peripheral S+Pt collisions. The data are well described by a first-order perturbative QED-calculation.
NON-DISRUPTIVE S+PT COLLISIONS.
No description provided.
The proton Compton effect has been studied in the region between the threshold for pion photoproduction and the Δ(1232). The measurements were performed using bremmstrahlung from the high duty-factor electron beam available at the Saskatchewan Accelerator Laboratory. Elastically scattered photons were detected with an energy resolution of approximately 1.5% using a large NaI total absorption scintillation detector. Differential cross sections were measured for photon energies in the range 136 MeV≤Eγ≤289 MeV and for angles in the range 25°<θlab<135°. The angular distributions and the excitation functions derived from these data are in agreement with recent theoretical analyses. The results were interpreted within a formalism based in part on dispersion relations to obtain model-dependent estimates of the electric and magnetic polarizabilities, α¯ and β¯. We find, subject to the dispersion sum rule constraint α¯+β¯=(14.2±0.5)×10−4 fm3, that α¯=(9.8±0.4±1.1)×10−4 fm3 and β¯=(4.4∓0.4∓1.1)×10−4 fm3, which are consistent with the best previous measurements.
Axis error includes +- 3/3 contribution (DUE TO THE CALIBRATION).
Axis error includes +- 3/3 contribution (DUE TO THE CALIBRATION).
Axis error includes +- 3/3 contribution (DUE TO THE CALIBRATION).
The differential cross sections dσ/dxF for J/ψ produced inclusively in 800 GeV/c p-Cu and p-Be collisions have been measured in the kinematic range 0.30≤xF≤0.95 through the decay mode J/ψ→μ+μ−. They are compared with the predictions of the semilocal duality model for several sets of parton density functions. No evidence for a suggested intrinsic charm contribution to the cross section is observed. The ratio of the differential cross sections for Cu and Be targets confirms the suppression of J/ψ production in heavy nuclei at large xF.
No description provided.
No description provided.
A leading charm meson is one with longitudinal momentum fraction, xF>0, whose light quark (or antiquark) is of the same type as one of the quarks in the beam particles. We report on the production asymmetry, A=[σ(leading-σ(nonleading)]/[σ(leading)+σ(nonleading)] as a function of xF. The data consist of 1500 fully reconstructed D± and D*± decays in Fermilab experiment E 769. We find a significant asymmetry for the production of charm quarks is not expected in perturbative quantum chromodynamics.
Asymmetry as function of XL.
Asymmetry as function of PT**2.
Inclusive production of ϕ,K*0, and\(\overline {K*^0 } \) mesons has been measured in γp, π±p andK± p collisions at beam energies of 65 GeV<Eγ<175 GeV andEπ/K =80 and 140 GeV. Cross sections have been determined over the range 0<xF<1.0 and 0<PT<1.8 GeV/c. Emphasis is put on the comparison of cross sections for different projectiles as a function ofxF so as to study the effects of common quarks between the beam particle and the detected ϕ,K*0 or\(\overline {K*^0 } \). The data are compared with a parton fusion model. Many features of the data are well explained. In detail the strange quark appears to carry a large fraction of the kaon momentum and the contribution of the valence quarks from the proton is small.
Statistical errors only.
Statistical errors only.
Statistical errors only.. An entry 0.00 indicates a statistical error of < 0.005.
An analysis is presented of scaling violations of the proton structure function F 2 ( x , Q 2 ) measured with the H1 detector at HERA in the range of Bjorken x values between x = 3 × 10 −4 and 10 −2 for four-momentum transfers Q > 2 larger than 8.7 GeV 2 . The structure function F 2 ( x , Q 2 ) is observed to rise linearly with ln Q 2 . Under the assumption that the observed scaling violations at small x ⩽ 0.01 are described correctly by perturbative QCD, an estimate is obtained of the gluon distribution function G ( x , Q 0 2 ) at Q 2 2 = 20 GeV 2 .
No description provided.
We report data on proton-nucleon collisions obtained on Fermilab experiment E711, in which high transverse momentum hadrons are produced near 90° in the proton-nucleon center of mass forming high mass states, using an 800 GeV/c proton beam on targets of beryllium, aluminum, iron, and tungsten. The data presented cover the mass range from 7 to 15 GeV/c2, the three dihadron charge states ++, +-, and --, and parton-parton scattering angles up to cosθ*=0.50. We present the differential mass dihadron cross section, as well as the angular and charge dependence of the measurement. The cross section as a function of the parton-parton scattering angle for the three charge states is shown to vary linearly with the value of the atomic weight. While the angular distributions are shown to be independent of the target type, a small dependence on the charge state of the distributions is observed. The data are shown to be in good agreement with extrapolations from previous measurements and phenomenological QCD calculations.
Atomic weight dependence as function of the parton-parton scattering angle. This angle (theta cm) is defined as the polar angle between the dihadron axis and the beam director in the rest frame of the massive dihadron state. Cross section parameterised as SIG0(MASS**A). Measurements of A are presented here as POWER(N=A,YN=SIG).
Atomic weight dependence as function of the parton-parton scattering angle. This angle (theta cm) is defined as the polar angle between the dihadron axis and the beam director in the rest frame of the massive dihadron state. Cross section parameterised as SIG0(MASS**A). Measurements of A are presented here as POWER(N=A,YN=SIG).
Errors are statistical only.
An analysis of the production of the Λ baryon in the hadronic decays of the Z 0 is presented, based on about 993K multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. The differencial cross section of the Λ and the correlations between Λ and Λ produced in the same event are compared to current models, based both on string fragmentation and on cluster decay. The predictions of the string fragmentation model are found to give satisfactory agreements with the data, clearly better than those of the cluster model.
No description provided.
Combined LAMBDA and LAMBDABAR multiplicity.
Errors contain systematic uncertainties.
The CLEO II detector is used to search for the production of χc2 states in two-photon interactions. We use the signature χc2→γJ/ψ→γl+l− with l=e,μ. Using 1.49 fb−1 of data taken with beam energies near 5.29 GeV, the two-photon width of the χc2 is determined to be Γ(χc2→γγ)=1.08±0.30(stat)±0.26(syst) keV, in agreement with predictions from perturbative QCD.
Results below were obtained usign J/psi from-factors in the two photon propogators, and assumes that only transversely polarized photons are significant inthe production of the CHI/C2(1P) state.
No description provided.