A Measurement of the Pion Charge Radius

Amendolia, S.R. ; Badelek, B. ; Batignani, G. ; et al.
Phys.Lett.B 146 (1984) 116-120, 1984.
Inspire Record 201598 DOI 10.17182/hepdata.30511

We report a measurement of the negative pion electromagnetic form factor in the range of space-like four-momentum transfer 0.014 < q 2 < 0.122 (GeV/ c ) 2 . The measurement was made by the NA7 collaboration at the CERN SPS, by observing the interaction of 300 GeV pions with the electrons of a liquid hydrogen target. The form factor is fitted by a pole form with a pion radius of 〈r 2 〈 1 2 = 0.657 ± 0.012 fm.

1 data table match query

Errors are statistical only.


A Measurement of the Space - Like Pion Electromagnetic Form-Factor

The NA7 collaboration Amendolia, S.R. ; Arik, M. ; Badelek, B. ; et al.
Nucl.Phys.B 277 (1986) 168, 1986.
Inspire Record 228132 DOI 10.17182/hepdata.33611

The pion form factor has been measured in the space-like q 2 region 0.014 to 0.26 (GeV/ c ) 2 by scattering 300 GeV pions from the electrons of a liquid hydrogen target. A detailed description is given of the apparatus, data analysis and corrections to the data. The mean square charge radius extracted from the data is model-dependent. We find that a form which includes a realistic description of the form factor phase gives a similar results to the naive pole form, and conclude 〈r 2 π 〉 = 0.438±0.008 fm 2 .

1 data table match query

No description provided.


A Measurement of the Kaon Charge Radius

Amendolia, S.R. ; Batignani, G. ; Beck, G.A. ; et al.
Phys.Lett.B 178 (1986) 435-440, 1986.
Inspire Record 231129 DOI 10.17182/hepdata.30242

The negative kaon electromagnetic form factor has been measured in the space-like q 2 range 0.015–0.10 (GeV/ c ) 2 by the direct scattering of 250 GeV kaons from electrons at the CERN SPS. It is found that the kaon mean square charge radius 〈 r 2 K 〉 = 0.34 ± 0.05 fm 2 . From data collected simultaneously for πe scattering, the difference between the charged pion and kaon mean square radii (which is less sensitive to systematic errors) is found to be 〈 r 2 π 〉 − 〈 r 2 K = 0.1 0 ± 0.045 fm 2 .

1 data table match query

Ratio is assumed free of systematic error.


Measurement of Differential Cross-Sections for Elastic K+ p Scattering in the Momentum Range 0.7-GeV/c to 1.9-GeV/c

Charles, B.J. ; Cowan, I.M. ; Edwards, T.R.M. ; et al.
Nucl.Phys.B 131 (1977) 7-53, 1977.
Inspire Record 126513 DOI 10.17182/hepdata.8361

Differential cross sections for elastic K + p scattering have been measured at nineteen momenta between 0.7 and 1.9 GeV/ c . The data represent between 10 thousand and 20 thousand elastic events at each momentum and cover a wide range of scattering angles ( −0.98 ≲ cos θ ∗ ≲ 0.95 ). A computer controlled system of scintillation counters and acoustic spark chambers was used to detect the elastic events. Various internal consistency checks indicate that the absolute normalization of the data is accurate to within 2–3%. The cross sections show a smooth transition from an isotropic angular distribution to a dominant forward peak over the range covered by the experiment. Phase-shift analyses including these results show little evidence for a direct-channel resonance, and fitting the results by t - and u -channel exchange processes alone gives a good fit.

19 data tables match query

No description provided.

No description provided.

No description provided.

More…

Differential cross-sections for elastic scattering of positive kaons on protons in the momentum range 0.9 to 1.9 gev/c

Charles, B.J. ; Cowan, I.M. ; Edwards, T.R.M. ; et al.
Phys.Lett.B 40 (1972) 289-292, 1972.
Inspire Record 75720 DOI 10.17182/hepdata.28271

None

1 data table match query

No description provided.


Measurement of total and partial photon proton cross-sections at 180-GeV center-of-mass energy

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 63 (1994) 391-408, 1994.
Inspire Record 372260 DOI 10.17182/hepdata.45055

Photon proton cross sections for elastic light vector meson production, σelνp, inelastic diffractive production, σndνp, non-diffractive production, σdνp, as well as the total cross section, σtotνp, have been measured at an average υp center of mass energy of 180 GeV with the ZEUS detector at HERA. The resulting values are σelνp = 18 ± 7 μb, σdνp = 33 ± 8 μb, σndνp = 91 ± 11 μb, and σtotνp 143 ± 17 μb, where the errors include statistical and systematic errors added in quadrature.

1 data table match query

Errors contain both statistics and systematics.


Search for diffractive charm production in 800-GeV/c proton - silicon interactions

The Fermilab E653 collaboration Kodama, K. ; Ushida, N. ; Mokhtarani, A. ; et al.
Phys.Lett.B 316 (1993) 188-196, 1993.
Inspire Record 35969 DOI 10.17182/hepdata.28848

A search for charm production in the coherent diffractive dissociation reaction pSi→XSi was carried out for the modes D 0 → K − π + , D 0 → K − π + π + π − , and D + → K − π + π + . No charm signals were observed, and the 90% confidence level upper limit for coherent charm pair production was determined to be 26 μ b per silicon nucleus. The results are interpreted as an upper limit of 0.2% on the amount of intrinsic charm in the proton.

1 data table match query

90 pct CL upper limits.


Diffraction dissociation in photoproduction at HERA

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Z.Phys.C 74 (1997) 221-236, 1997.
Inspire Record 440126 DOI 10.17182/hepdata.44667

A study is presented of the process gamma p -->XY, where there is a large rapidity gap between the systems X and Y. Measurements are made of the differential cross section as a function of the invariant mass mx of the system produced at the photon vertex. Results are presented at centre of mass energies of W_gp = 187 GeV and W_gp = 231 GeV, both where the proton dominantly remains intact and, for the first time, where it dissociates. Both the centre of mass energy and the mx~2 dependence of HERA data and those from a fixed target experiment may simultaneously be described in a triple-Regge model. The low mass photon dissociation process is found to be dominated by diffraction, though a sizable subleading contribution is present at larger masses. The pomeron intercept is extracted and found to be alpha_pom(0) = 1.068 \pm 0.016 (stat.) \pm 0.022 (syst.) \pm 0.041 (model), in good agreement with values obtained from total and elastic hadronic and photoproduction cross sections. The diffractive contribution to the process gamma p --> Xp with mx~2 / W_gp~2 < 0.05 is measured to be 22.2 \pm 0.6 (stat.) \pm 2.6 (syst.) \pm 1.7 (model) % of the total gamma p cross section at W_gp = 187 GeV.

2 data tables match query

Data for proton remaining intact.

Data for proton dissociating.


Analyzing Powers in Free $N$ (Polarized) $P$ Forward Elastic Scattering at Energies From 630-{MeV} to 1000-{MeV}

Korolev, G.A. ; Khanzadeev, A.V. ; Petrov, G.E. ; et al.
Phys.Lett.B 165 (1985) 262-264, 1985.
Inspire Record 228528 DOI 10.17182/hepdata.30310

The analysing powers in free →n p forward elastic scattering have been measured for incident neutron energies of 633, 784, 834, 934 and 985 MeV, and for momentum transfer 0.01 < ‖ t ‖ < 0.10 ( GeV / c ) 2 . The experiment used a recoil detector ionisation chamber which served at the same time as a gas target, and scintillation counters to measure the asymmetry of the scattered neutrons.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Test of Charge Symmetry in Neutron - Proton Elastic Scattering at 477-{MeV}

Abegg, R. ; Bandyopadhyay, D. ; Birchall, J. ; et al.
Phys.Rev.Lett. 56 (1986) 2571, 1986.
Inspire Record 228239 DOI 10.17182/hepdata.20237

An experiment resulting in the first measurement of the isospin-mixing, charge-symmetry-violating component of the n−p interaction has been performed. The experiment determined the difference in the angles of the zero crossing of the neutron and proton analyzing powers An and Ap at 477 MeV. In terms of the laboratory scattering angle of the neutron, the measured difference is θ0n(An)−θ0n(Ap)=+0.13° ±0.06° (±0.03°), where the second error is a worst-case estimate of systematic error. The resulting difference in the analyzing powers at the zero-crossing angle is An−Ap=+0.0037 ±0.0017 (±0.0008).

1 data table match query

No description provided.