We have studied the inclusive production of K*±(890) and Y*±(1385) in pp, π+p, and K+p interactions at 147 GeV/c. The experiment used the Fermilab 30-inch hydrogen bubble chamber with the hybrid spectrometer system. Results are based on a sample of 1916 observed KS and 932 observed A. Inclusive cross sections are given for K*± and Y*± production from the three beams, and comparisons are made with experiments at other energies. Feynman-x and transverse-momentum-squared distributions are also calculated. The results suggest that the K*− is entirely produced in the central region, while the K*+ includes a component from beam fragmentation. Comparisons are made with the additive quark model.
No description provided.
No description provided.
Large transverse energy cross sections of 300 GeV/ c pions and protons on hydrogen have been measured with a segmented calorimeter covering the central rapidity region −0.88 < y < 0.67 and 2 π in azimuth. The selected events show large multiplicities and no jet-like event structure. Processes more complicated than the scattering of two constituents appear to dominate these inelastic collisions.
No description provided.
No description provided.
No description provided.
Production of ϱ 0 , K ∗0 , K ∗0 , and φ have been measured in proton-proton collisions at the CERN Intersecting Storage Rings (ISR) at low p T in the central region. The transverse mass spectra are well described by exp (− aμ T ), with a = −6.4±0.2 GeV −1 . The cross sections for d σ/ d y| y=0 are 6.5±0.8±1.2 mb for ϱ 0 , 1.9±0.3±0.3 mb for K ∗) , 1.9±03±03 mb for K ∗0 , and 60.±0.12±0.13 mb for φ , where the first error is statistical and the second is sytematic.
No description provided.
No description provided.
The mass and momentum transfer spectra of the charged K K system produced in the reaction π ± p→K s 0 K ± p are analyzed. The data have been collected at the CERN SPS with the Geneva-Lausanne two-arm, non-magnetic spectrometer at 30 and 50 GeV/ c incident momenta. The general features of the reactions at these energies and the results of partial-wave analyses of the two kaon system are presented. The channel is dominated by the diffractive production of even spin resonances. The spin 4 recurrence of the A 2 (1320) is clearly observed at 2040 MeV ( Γ =380 MeV. A new resonance is observed with a mass M =2450MeV and a width Γ =400 MeV; the quantum numbers of this state are found to be I G ( J PC )=1 −(6 ++ ) . The analysis also shows the decay of the decay of the meson ϱ′(1600) through the K K channel at both energies. The production amplitudes are determined both as a function of the K K effective mass and of the momentum transfer. Isoscalar natural parity exchange is dominant. The energy dependence between 10 and 50 GeV/ c is shown to be well described by a Regge pole model based on the f-dominated pomeron hypothesis. We compare the production mechanisms of the 2 + resonances A 2 (1320) and K ∗ (1430). Finally, we estimate the K K branching ratios of the spin 4 A 2 (2040) and spin 6 A 2 (2450) resonances.
No description provided.
D(SIG)/DT FOR 50 GEV IN RESONANCE REGIONS.
No description provided.
The reactions K ± p→K s 0 π ± p are studied at 30 and 50 GeV/ c . Data for these reactions were obtained using the Geneva-Lausanne spectrometer whose main characteristics are: (i) large forward acceptance; (ii) high-resolution time-of-flight for recoil proton momentum measurement; (iii) high data-taking rate and on-line pattern recognition. The K ∗ (1 − ), K ∗ (2 + ), K ∗ (3 − ) and K ∗ (4 + ) resonance parameters and production cross sections are determined. The K π production amplitudes are calculated both as a function of the K π mass and of the momentum transfer. Isoscalar natural parity exchange (NPE) is dominant. The NPE amplitudes are decomposed into pomeron- f-, ω-exchange contributions, and their energy dependence between 10 and 50 GeV/ c is shown to be well-described by a Regge pole model based on the f-dominated pomeron hypothesis.
CORRECTED TO INCLUDE BW TAILS AND THE FRACTION OF EVENTS OUTSIDE THE T-ACCEPTANCE OF THE SPECTROMETER.
FITS OF THE FORM -A*TP*EXP(BTP) ARE MADE BY THE AUTHORS AND THE VALUES OF A AND B ARE GIVEN HERE. MASS REGIONS OF THE FIT ARE:-. K*(890) 0.84 < M <0.94 GEV. K*(1430) 1.36 < M <1.5 GEV. K*(1780) 1.68 < M <1.88 GEV.
FITS OF FORM -A*TP*EXP(BTP) ARE MADE BY THE AUTHORS AND THE VALUES OF A AND B ARE GIVEN HERE. MASS REGIONS OF THE FIT ARE:-. K*(890) 0.84 < M <0.94 GEV. K*(1430) 1.36 < M <1.5 GEV. K*(1780) 1.68 < M <1.88 GEV.
The final state K − pn has been analyzed in a K − deuterium bubble chamber experiment at K − momenta between 680 and 840 MeV/ c . Differential cross sections for elastic K − p and K − n scattering in the c.m. energy range of 1.60–1.74 GeV are presented. The results for K − p→K − p agree well with existing data obtained with hydrogen targets. The results for K − n→K − n are lower but still compatible with recent measurements from a counter experiment.
No description provided.
No description provided.
PLAB IS THE EFFECTIVE KAON LAB MOMENTA CORRESPONDING TO THE GIVEN CM ENERGY ASSUMING AN ON-SHELL TARGET NUCLEON AT REST.
We report on the interactions of an incident 200 GeV / c beam composed of 33% protons, 16% kaons, and 48% pions on targets of silver and gold mounted in the Fermilab 30″ bubble chamber. Within our limited statistics, we find the total cross sections and average multiplicities to agree with previously published data. We find the KNO scaling distribution curve to be broader for heavy nuclei than for hydrogen. We present the first data for V 0 production on gold and silver. We also present, for the first time, evidence for a positive charge excess among the sample of relativistic tracks from interactions on gold and silver. We observe a trend where the positive charge excess increases with target atomic number and with increasing charged particle multiplicity. We find the charge excess to exist among the sample of particles having greater than 2 GeV / c momentum and to persist in the sample with momentum greater than 4 GeV / c .
SIG REFERS PRODUCTION OF 2 OR MORE CHARGED PARTICLES EXCLUDING ELASTICS BUT INCLUDING COHERENT PRODUCTION. MULT REFERS TO RELATIVISTIC SECONDARIES (BETA > 0.7).
NO CORRECTION FOR GAMMA CONVERSIONS IN THE TARGET IN THIS TABLE BUT DIFFERENCE DOES NOT NEED CORRECTION.
No description provided.
Data on inclusive kaon production in e+e− annihilations at energies in the vicinity of the ϒ(4S) resonance are presented. A clear excess of kaons is observed on the ϒ(4S) compared to the continuum. Under the assumption that the ϒ(4S) decays into BB¯, a total of 3.38±0.34±0.68 kaons per ϒ(4S) decay is found. In the context of the standard B-decay model this leads to a value for (b→c)(b→all) of 1.09±0.33±0.13.
No description provided.
ACCEPTANCE CORRECTED MOMENTUM DISTRIBUTIONS FOR CONTINUUM AND UPSILON EVENTS WITH THE CONTINUUM SUBTRACTED.
The absolute cross section for the reaction C(α, X)C11 has been measured from 0.64 to 2.8 GeV using a counter telescope to determine the alpha flux and a plastic scintillator target to determine the C11 activity. The results are 55.6±2.2 mb (0.64 GeV), 49.2±1.9 mb (1.2 GeV), 44.1±1.8 mb (2.0 GeV), and 42.0±1.7 mb (2.8 GeV). NUCLEAR REACTIONS C(α, X)C11, E=0.64, 1.2, 2.0, 2.8 GeV; measured absolute cross section.
No description provided.
Results from K± elastic and inelastic scattering from C12 and Ca40 are reported. The data were all taken at an incident momentum of 800 MeV/c over an angular range from 2° to 38°. The elastic data are compared to first-order optical model calculations in coordinate and momentum space; good qualitative agreement is obtained. The inelastic data (from C12 only) are compared to distorted-wave Born approximation calculations, and good agreement is found if "realistic" inelastic transition densities are used. Although a first-order optical potential description does not describe the data fully, there are strong indications of the increased penetrability of K+ over K− in this energy range. NUCLEAR REACTIONS C12(K±,K±)C12, Ca40(K±,K±)Ca40, E=442 MeV (800 MeV/c), measured σ(θ) for elastic and inelastic scattering, compared to optical model and DWBA calculations, deduced optical potential parameters; θ=2°−38°, Δθ=1°.
X ERROR D(THETA) = 1.0100 DEG.
X ERROR D(THETA) = 1.0100 DEG.
X ERROR D(THETA) = 1.1000 DEG.