We have measured the cross section, the angular distribution, and the Λ polarization for the reaction π−p→ΛK0. A spark-chamber spectrometer was used to collect 8400 ΛK0 events at fourteen beam momenta near ΣK threshold. Our data do not show the prominent cross-section enhancement suggested by some previous experiments. However, detailed structure in the cross section and the angular distribution agrees well with a simple model which includes a cusp effect at ΣK threshold.
No description provided.
BACKWARD-FORWARD PRODUCTION ASYMMETRY.
AVERAGE LAMBDA POLARIZATION.
We have measured the polarization of the recoil proton in the reactions γp→π0p and γp→γp for incident photon energies between 3 and 7 GeV, and t values from -0.2 to -0.65 GeV2. The polarization in neutral-pion production varies from 0 to -1 over this range. Contrary to expectation, it does not agree completely with the polarized-target asymmetry.
No description provided.
Inclusive π− distributions from 205-GeV/c pp interactions, covering the full range of longitudinal and transverse momenta, have been obtained using the 30-in. hydrogen bubble chamber at the National Accelerator Laboratory. These data provide new evidence for scaling in the fragmentation region and for a plateau in the central region of rapidity. The 90°-c.m. invariant cross section varies as exp[−(10±2)PT2] in the range PT2<~0.1 (GeV/c)2.
No description provided.
From measurements of proton-proton elastic scattering at very small momentum transfers where the nuclear and Coulomb amplitudes interfere, we have deduced values of ρ, the ratio of the real to the imaginary forward nuclear amplitude, for energies from 50 to 400 GeV. We find that ρ increases from -0.157 ± 0.012 at 51.5 GeV to +0.039 ± 0.012 at 393 GeV, crossing zero at 280 ± 60 GeV.
No description provided.
The real part of the forward amplitude for Compton scattering on protons was measured through the interference between the Compton and Bethe-Heithler amplitudes by detecting the zero-degree electron pairs asymmetrically. The measurement was made at an average photon energy of 〈k〉=2.2 GeV, and an average momentum transfer to the recoil proton 〈t〉=−0.027 (GeV/c)2. The result confirms the prediction of the Kramers-Kronig relation.
No description provided.
Data are presented which firmly establish the existence of the double charge exchange reaction p p → Σ − Σ − at 3.6 GeV/ c . The forward cross section was found to be (5.9 ± 1.1) μb and the ratio of the “forbidden” to “allowed” forward cross section is R = σ( Σ − Σ − σ( Σ + Σ + ) = 0.09 ± 0.02 .
No description provided.
No description provided.
We have measured dσ du for π − p elastic scattering at 3 and 4 GeV c in the ranges −0.119⩽ u ⩽0.113 and −0.233⩽ u ⩽0.088, respectively. A fit of the form d σ /d u = A exp ( Bu + Cu 2 ) gives B = 4.34±0.42 and C = 7.0±3.5 at 4 GeV c with χ 2 = 5.7 for 9 degrees of freedom; the simpler form d σ /d u = A exp( Bu ) gives B = 3.7 ± 0.3 with χ 2 = 9.6. At 3 GeV c we confirm with high statistics the structures already observed.
No description provided.
No description provided.
The average multiplicities 〈 n c 〉 and 〈n〉, of charged-plus-neutral pions produced in e + e − collisions, have been determined for total center-of-mass energies ranging from 1.2 to 2.4 GeV. No appreciable multiplicity variation is observed over this energy range, where the mean values 〈; n c 〉 = 3.3 +0.3 −0.2 and 〈 n 〉 = 4.4 +0.4 −0.2 are found.
No description provided.
VALUES OF R CALCULATED FROM TOTAL CROSS SECTION.
We have measured with good statistics the differential cross section for p p →π + π − , K + K − around 0°. Our data and previous results show that the s -dependence of dσ/d t has a value compatible with the appropriate baryon exchange.
No description provided.
No description provided.
No description provided.
Results are presented on an analysis of the reaction K + p → K ∗+ (890) p at 16 GeV/ c and compared with data at lower incident momenta and with corresponding results for the reaction K − p → K ∗− (890) p. It is found for both reactions that the energy dependence of the cross section exhibits a simple ( p − n lab behaviour.
BREIT-WIGNER RESONANCE FITS WITH BACKGROUND.