In the analysis of the reactione+e−→e+e−KS0Ks0 clear evidence for exclusive γγ→f2′ resonance production is observed. The productΓγγ ·B(f2′→K\(\bar K\)) is measured to be 0.10−0.03−0.02+0.04+0.03 keV independent of ana priori assumption on the helicity structure. Our data are consistent with a pure helicity 2 contribution and we derive an upper limit for the ratioΓγγ(0)/Γγγ. The absence of events in the mass region around 1.3 GeV clearly proves destructivef2−a2 interference and allows to measure the relative phases betweenf2,a2 andf2′. Upper limits on the production of the glueball candidate statesf2(1720) andX(2230) as well as theKS0KS0-continuum are given.
Data read from graph.
Charge distributions of projectile fragments produced in the interactions of 22Ne beams with emulsion at 4.1A GeV/c have been studied. Correlations between projectile and target fragments and among projectile fragments are presented. The change of charge yield distribution with the violence of the collision has been shown. The present analysis contradicts theoretical calculations describing the inclusive charge yield distribution of fragments by a single process.
.
.
.
We have measured the W transverse momentum distribution ( p T W ) using a sample of 323 W → eν and W → μν events produced in proton-antiproton collisions at the CERN collider. In the present letter we extend the study of the distribution up to p T W ∼- m W and compare to leading and higher order QCD. This comparison is a precise test of QCD with hadron colliders and the inclusive spectrum gives good agreement over a large range of p T W . However we observed two events at very large p T W (∼- 100 GeV/ c ) in which the W candidate recoils against an energetic di-jet system. Both events have a very large missing transverse energy and a jet-jet mass compatible with the W mass. In a separate analysis, a topologically similar event has been observed in which a high-mass di-jet system is balanced by a large missing transverse energy which could be interpreted as Z 0 → ν ν decay. We cannot easily explain these three events in terms of explicit second-order QCD calculations. However we cannot exclude at this stage the possibility that they are the result of non-gaussian fluctuations in the response of UA1 calorimetry or a statistical fluctuation in the data.
THESE NUMBERS WRE READ OFF FIG 1A.
None
Mean charged multiplicity for NSD events extrapolated to the full phase space.
Charged particle pseudorapidity density for NSD events at pseudorapidiy = 0.
Corrected charged particle multiplicity distribution for NSD events.
This paper presents experimental results on π + π − production threshold from the collision of quasi-real photons. The data, obtained at the e + e − collider DCI, are a combination of the results from the DM1 and DM2 experiments. Using the e + e − and π + π − production for normalization and cross-checks, we observe a pion pair yield at low invariant mass ( W < 500 MeV/ c 2 ) which is approximately twice the one expected from Born terms.
Data read from graph.
Data read from graph.
The interaction of 800-GeV protons in nuclear emulsion has been investigated. The multiplicities and angular distributions of charged particles emitted by both the projectile and the target nucleus have been measured for 1718 inelastic events and are compared with the data obtained in proton-emulsion collisions at 67, 200, and 400 GeV. The target excitation is found to be independent of energy while the production of secondary particles continues to increase with incident proton energy.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
A comparison is made between the properties of the final state hadrons produced in 280 GeV μp interactions and ine+e− annihilation. The Lund model of hadroproduction is used as an aid in understanding the differences observed. The hadron distributions from μp ande+e− interactions are consistent with the quark parton model assumption of environmental independence, provided that the differences in heavy quark production and hard QCD effects in the two processes are taken into account. A comparison with aK+p experiment is also made. Values are also determined for the Lund model parameters σq = 0.410 ± 0.002 ± 0.020 GeV and σ′ = 0.29−0.15 −0.13+0.09+0.10 GeV, controlling the transverse momenta in fragmentation and intrinsic transverse momenta of the struck quark respectively.
With respect to the virtual photon axis.
With respect to the sphericity axis.
With respect to the thrust axis.